Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Pharm ; 604: 120747, 2021 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-34051320

RÉSUMÉ

Granular materials are part of the design, production and final products of different industrial sectors. Powder flowability is a major topic in manufacturing and transport as it is closely related to process feasibility. Nonetheless, the flows of granular materials are not easy to describe or quantify, even in the simple case of dry monodisperse cohesionless particles. Flowability assessment is not a standard or normalized issue; still, no test is able predict powder flow behavior in all the different mechanical situations encountered during processing. This study aims (1) to evaluate flowability, as device-related, through the force or the energy supplied to the powder bed and (2) to study the effect of glidants and moisture content on flowability. To illustrate these aims, the flowability of two well-known pharmaceutical excipients, Avicel® PH-102 and Retalac® mixed with four different types of precipitated nano-silica (SIPERNAT® D10, D17, 50 S and 500 LS), was assessed using two granular compaction devices: Densitap® and FT4® compaction cell. Our results show that the hydrophilicity of colloidal silica affects surface coverage, ranging from 6% to over 80%. Binary mixtures with hydrophobic additives, D10 and D17, generated smaller silica aggregates with a wider spread on the surface of host particles. For Retalac® conditioned at 20% RH, HR values changed from 1.30 (acceptable flow) to 1.17 (good flow). For Avicel® PH-102, conditioned at 60% RH, HR values changed from 1.22 (fair flow) to less than 1.10 (excellent flow).


Sujet(s)
Cellulose , Excipients , Humidité , Taille de particule , Poudres
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE