Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Arch Oral Biol ; 167: 106055, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39067325

RÉSUMÉ

OBJECTIVE: The molecular regulation of odontoblasts in dentin formation remains largely uncharacterized. Using neohesperidin (NEO), a well-documented osteoblast regulator, we investigated whether and how NEO participates in odontoblast regulation through longitudinal treatments using various doses of NEO. DESIGN: Mouse dental papilla cell-23 (MDPC-23) served as a model for odontoblasts. MDPC-23 were treated with various doses of NEO (0, 1, 5, 10, 15, 20 µmol/L). Proliferation was assessed using the Cell counting kit-8 assay. Survival/apoptosis was assayed by live/dead ratio. Migration capability was assessed using scratch healing and Transwell migration assays. Mineralization was assessed using alkaline phosphatase staining and alizarin red staining. The expression levels of four key genes (Runx2, osteocalcin [OCN], ß-catenin, and bone morphogenetic protein [BMP]-2) representing NEO-induced differentiation of MDPC-23 were measured by quantitative reverse transcription polymerase chain reaction. RESULTS: The proliferation trajectories of MDPC-23 treated with the five doses of NEO demonstrated similar curves, with a rapid increase in the 10 µmol/L NEO condition after 48 h of treatment. Similar dose-dependent trajectories were observed for survival/apoptosis. All four key genes representing odontogenic differentiation were upregulated in MDPC-23 induced by NEO treatments at two optimal doses (5 µmol/L and 10 µmol/L). Optimal migration and mobility trajectories were observed in MDPC-23 treated with 10 µmol/L NEO. Optimal mineralization was observed in MDPC-23 treated with 5 µmol/L NEO. CONCLUSION: NEO can subtly regulate odontoblast proliferation, differentiation, migration, and mineralization in vitro. NEO at 5-10 µmol/L offers a safe and effective perspective for clinical promotion of dentin bridge formation in teenagers.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE