Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Mater Chem B ; 11(8): 1749-1759, 2023 02 22.
Article de Anglais | MEDLINE | ID: mdl-36723375

RÉSUMÉ

Continuous glucose monitoring (CGM) devices have the potential to lead to better disease management and improved outcomes in patients with diabetes. Chemo-optical glucose sensors offer a promising, accurate, long-term alternative to the current CGMs that require frequent calibration and replacement. Recently, we have proposed glucose sensor designs using phosphorescence lifetime-based measurement of chemo-optical glucose sensing microdomains embedded within alginate hydrogels. Due to the poor long-term stability of calcium-crosslinked alginate, we propose poly(ethylene glycol) (PEG) hydrogels synthesized via thiol-Michael addition chemistry as an alternative hydrogel carrier. The objective of this study was to evaluate the suitability of Michael addition crosslinked PEG hydrogels compared to calcium crosslinked alginate hydrogels for encapsulating glucose-sensing microdomains. PEG hydrogels crosslinked via thiol-vinyl sulfone addition achieved gelation in under 5 minutes, resulting in an even distribution of sensing microdomains. The shear storage modulus of the PEG hydrogels was tunable from 2.2 ± 0.1 kPa to 9.5 ± 1.8 kPa, which was comparable to the alginate hydrogels (10.5 ± 0.8 kPa), and the inclusion of microdomains did not significantly impact stiffness. The high water content of PEG hydrogels resulted in high glucose permeability that closely corresponded to the glucose permeability of alginate (D = 0.09 and 0.12 cm2 s-1, respectively; p = 0.47), but the PEG hydrogels exhibited superior stability. Both PEG and alginate-embedded sensors exhibited a sensing range up to ∼200 mg dL-1 glucose. The lower limits of detection (LOD) for PEG and alginate-based glucose sensors were 19.8 and 20.6 mg dL-1 with a difference of just 4.2% variation. The small difference between PEG and alginate embedded sensors indicates that their sensing properties are primarily determined by the glucose sensing microdomains rather than the hydrogel matrix. Overall, the results of this study indicate that Michael addition-crosslinked PEG hydrogels are a promising platform for encapsulation of chemo-optical glucose sensing microdomains.


Sujet(s)
Techniques de biocapteur , Glucose , Humains , Calcium , Autosurveillance glycémique , Glycémie , Matériaux biocompatibles/composition chimique , Thiols , Hydrogels/composition chimique , Polyéthylène glycols/composition chimique , Alginates/composition chimique
2.
Macromol Rapid Commun ; 41(14): e2000287, 2020 Jul.
Article de Anglais | MEDLINE | ID: mdl-32515861

RÉSUMÉ

The discovery of tetrazine click-induced secondary interactions is reported as a promising new tool for polymeric biomaterial synthesis. This phenomenon is first demonstrated as a tool for poly(ethylene glycol) (PEG) hydrogel assembly via purely non-covalent interactions and is shown to yield robust gels with storage moduli one to two orders of magnitude higher than other non-covalent crosslinking methods. In addition, tetrazine click-induced secondary interactions also enhance the properties of covalently crosslinked hydrogels. A head-to-head comparison of PEG hydrogels crosslinked with tetrazine-norbornene and thiol-norbornene click chemistry reveals an approximately sixfold increase in storage modulus and unprecedented resistance to hydrolytic degradation in tetrazine click-crosslinked gels without substantial differences in gel fraction. Molecular dynamic simulations attribute these differences to the presence of secondary interactions between the tetrazine-norbornene cycloaddition products, which are absent in the thiol-norbornene crosslinked gels.


Sujet(s)
Matériaux biocompatibles , Hydrogels , Chimie click , Polyéthylène glycols , Thiols
3.
Adv Ther (Weinh) ; 3(1)2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-38882245

RÉSUMÉ

Protein conjugation to biomaterial scaffolds is a powerful approach for tissue engineering. However, typical chemical conjugation methods lack site-selectivity and can negatively impact protein bioactivity. To overcome this problem, a site-selective strategy is reported here for installing tetrazine groups on terminal poly-histidines (His-tags) of recombinant proteins. These tetrazine groups are then leveraged for bio-orthogonal conjugation to poly(ethylene glycol) (PEG) hydrogel microparticles, which are subsequently assembled into microporous annealed particle (MAP) hydrogels. Efficacy of the strategy is demonstrated using recombinant, green fluorescent protein with a His tag (His-GFP), which enhanced fluorescence of the MAP hydrogels compared to control protein lacking tetrazine groups. Subsequently, to demonstrate efficacy with a therapeutic protein, recombinant human bone morphogenetic protein-2 (His-BMP2) was conjugated. Human mesenchymal stem cells growing in the MAP hydrogels responded to the conjugated BMP2 and significantly increased mineralization after 21 days compared to controls. Thus, this site-selective protein modification strategy coupled with bio-orthogonal click chemistry is expected to be useful for bone defect repair and regeneration therapies. Broader application to the integration of protein therapeutics with biomaterials is also envisioned.

4.
ACS Biomater Sci Eng ; 5(12): 6395-6404, 2019 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-33417792

RÉSUMÉ

Microporous annealed particle (MAP) hydrogels are an emerging class of biomaterials with the potential to improve outcomes in tissue repair and regeneration. Here, a new MAP hydrogel platform comprising poly(ethylene) glycol (PEG) hydrogel microparticles that are annealed in situ using bio-orthogonal tetrazine click chemistry is reported (i.e., TzMAP hydrogels). Briefly, clickable PEG-peptide hydrogel microparticles with extracellular matrix mimetic peptides to permit cell adhesion and enzymatic degradation were fabricated via submerged electrospraying and stoichiometrically controlled thiol-norbornene click chemistry. Subsequently, unreacted norbornene groups in the microparticles were leveraged for functionalization with bioactive proteins as well as annealing into TzMAP hydrogels via the tetrazine-norbornene click reaction, which is highly selective and proceeds spontaneously without requiring an initiator or catalyst. The results demonstrate that the clickable particles can be easily applied to a tissue-like defect and then annealed into an inherently microporous structure in situ. In addition, the ability to produce TzMAP hydrogels with heterogeneous properties by incorporating multiple types of hydrogel microspheres is demonstrated, first with fluorophore-functionalized hydrogel microparticles and then with protein-functionalized hydrogel microparticles. For the latter, tetrazine-modified alkaline phosphatase was conjugated to PEG hydrogel microparticles, which were mixed with nonfunctionalized microparticles and used to produce TzMAP hydrogels. A biomimetic mineralized/nonmineralized interface was then produced upon incubation in calcium glycerophosphate. Finally, platelet-derived growth factor-BB (PDGF-BB) and human periodontal ligament stem cells (PDLSC) were incorporated into the TzMAP hydrogels during the annealing step to demonstrate their potential for delivering regenerative therapeutics, specifically for periodontal tissue regeneration. In vitro characterization revealed excellent PDGF-BB retention as well as PDLSC growth and spreading. Moreover, PDGF-BB loading increased PDLSC proliferation within hydrogels by 90% and more than doubled the average volume per cell. Overall, these results demonstrate that TzMAP hydrogels are a versatile new platform for the delivery of stem cells and regenerative factors.

5.
J Mater Chem B ; 6(30): 4929-4936, 2018 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-30746148

RÉSUMÉ

Click chemistry reactions have become an important tool for synthesizing user-defined hydrogels consisting of poly(ethylene glycol) (PEG) and bioactive peptides for tissue engineering. However, because click crosslinking proceeds via a step-growth mechanism, multi-arm telechelic precursors are required, which has some disadvantages. Here, we report for the first time that this requirement can be circumvented to create PEG-peptide hydrogels solely from linear precursors through the use of two orthogonal click reactions, the thiol-maleimide Michael addition and thiol-norbornene click reaction. The rapid kinetics of both click reactions allowed for quick formation of norbornene-functionalized PEG-peptide block copolymers via Michael addition, which were subsequently photocrosslinked into hydrogels with a dithiol linker. Characterization and in vitro testing demonstrated that the hydrogels have highly tunable physicochemical properties and excellent cytocompatiiblity. In addition, stoichiometric control over the crosslinking reaction can be leveraged to leave unreacted norbornene groups in the hydrogel for subsequent hydrogel functionalization via bioorthogonal inverse-electron demand Diels-Alder click reactions with s-tetrazines. After selectively capping norbornene groups in a user-defined region with cysteine, this feature was leveraged for protein patterning. Collectively, these results demonstrate that our novel chemical strategy is a simple and versatile approach to the development of hydrogels for tissue engineering that could be useful for a variety of applications.

6.
Biomacromolecules ; 17(11): 3516-3523, 2016 11 14.
Article de Anglais | MEDLINE | ID: mdl-27656910

RÉSUMÉ

Click chemistry is a versatile tool for the synthesis and functionalization of polymeric biomaterials. Here, we describe a versatile new strategy for producing bioactive, protein-functionalized poly(ethylene glycol) (PEG) hydrogel microparticles that is based on sequential thiol-ene and tetrazine click reactions. Briefly, tetra-functional PEG-norbornene macromer and dithiothreitol (SH) cross-linker were combined at a 0.75:1 [SH]:[norbornene] ratio, emulsified in a continuous Dextran phase, and then photopolymerized to form PEG hydrogel microparticles that varied from 8 to 30 µm in diameter, depending on the PEG concentration used. Subsequently, tetrazine-functionalized protein was conjugated to unreacted norbornene groups in the PEG microparticles. Tetrazine-mediated protein tethering to the microparticles was first demonstrated using fluorescein-labeled ovalbumin as a model protein. Subsequently, bioactive protein tethering was demonstrated using alkaline phosphatase (ALP) and glucose oxidase (GOx). Enzyme activity assays demonstrated that both ALP and GOx maintained their bioactivity and imparted tunable bioactivity to the microparticles that depended on the amount of enzyme added. ALP-functionalized microparticles were also observed to initiate calcium phosphate mineralization in vitro when incubated with calcium glycerophosphate. Collectively, these results show that protein-functionalized hydrogel microparticles with tunable bioactive properties can be easily synthesized using sequential click chemistry reactions. This approach has potential for future applications in tissue engineering, drug delivery, and biosensing.


Sujet(s)
Phosphatase alcaline/composition chimique , Systèmes de délivrance de médicaments , Glucose oxidase/composition chimique , /composition chimique , Matériaux biocompatibles/synthèse chimique , Matériaux biocompatibles/composition chimique , Matériaux biocompatibles/usage thérapeutique , Chimie click , Humains , /synthèse chimique , /usage thérapeutique , Nanoparticules/composition chimique , Nanoparticules/usage thérapeutique , Polyéthylène glycols/synthèse chimique , Polyéthylène glycols/composition chimique , Polymérisation
7.
Adv Healthc Mater ; 2(8): 1142-50, 2013 Aug.
Article de Anglais | MEDLINE | ID: mdl-23386382

RÉSUMÉ

We describe the self-folding of photopatterned poly (ethylene glycol) (PEG)-based hydrogel bilayers into curved and anatomically relevant micrometer-scale geometries. The PEG bilayers consist of two different molecular weights (MWs) and are photocrosslinked en masse using conventional photolithography. Self-folding is driven by differential swelling of the two PEG bilayers in aqueous solutions. We characterize the self-folding of PEG bilayers of varying composition and develop a finite element model which predicts radii of curvature that are in good agreement with empirical results. Since we envision the utility of bio-origami in tissue engineering, we photoencapsulate insulin secreting ß-TC-6 cells within PEG bilayers and subsequently self-fold them into cylindrical hydrogels of different radii. Calcein AM staining and ELISA measurements are used to monitor cell proliferation and insulin production respectively, and the results indicate cell viability and robust insulin production for over eight weeks in culture.


Sujet(s)
Hydrogels/composition chimique , Polyéthylène glycols/composition chimique , Animaux , Lignée cellulaire , Colorants fluorescents/composition chimique , Insuline/métabolisme , Cellules à insuline/cytologie , Cellules à insuline/métabolisme , Souris , Microscopie de fluorescence , Masse moléculaire , Taille de particule , Ingénierie tissulaire , Rayons ultraviolets
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...