Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Genet ; 55(3): 461-470, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36797366

RÉSUMÉ

Obesity-associated morbidity is exacerbated by abdominal obesity, which can be measured as the waist-to-hip ratio adjusted for the body mass index (WHRadjBMI). Here we identify genes associated with obesity and WHRadjBMI and characterize allele-sensitive enhancers that are predicted to regulate WHRadjBMI genes in women. We found that several waist-to-hip ratio-associated variants map within primate-specific Alu retrotransposons harboring a DNA motif associated with adipocyte differentiation. This suggests that a genetic component of adipose distribution in humans may involve co-option of retrotransposons as adipose enhancers. We evaluated the role of the strongest female WHRadjBMI-associated gene, SNX10, in adipose biology. We determined that it is required for human adipocyte differentiation and function and participates in diet-induced adipose expansion in female mice, but not males. Our data identify genes and regulatory mechanisms that underlie female-specific adipose distribution and mediate metabolic dysfunction in women.


Sujet(s)
Obésité , Rétroéléments , Humains , Femelle , Animaux , Souris , Obésité/génétique , Obésité/métabolisme , Adiposité/génétique , Indice de masse corporelle , Rapport taille-hanches , Tissu adipeux/métabolisme , Nexines de tri/génétique , Nexines de tri/métabolisme
2.
Nat Commun ; 12(1): 5253, 2021 09 06.
Article de Anglais | MEDLINE | ID: mdl-34489471

RÉSUMÉ

Genome-wide association studies (GWAS) have identified many disease-associated variants, yet mechanisms underlying these associations remain unclear. To understand obesity-associated variants, we generate gene regulatory annotations in adipocytes and hypothalamic neurons across cellular differentiation stages. We then test variants in 97 obesity-associated loci using a massively parallel reporter assay and identify putatively causal variants that display cell type specific or cross-tissue enhancer-modulating properties. Integrating these variants with gene regulatory information suggests genes that underlie obesity GWAS associations. We also investigate a complex genomic interval on 16p11.2 where two independent loci exhibit megabase-range, cross-locus chromatin interactions. We demonstrate that variants within these two loci regulate a shared gene set. Together, our data support a model where GWAS loci contain variants that alter enhancer activity across tissues, potentially with temporally restricted effects, to impact the expression of multiple genes. This complex model has broad implications for ongoing efforts to understand GWAS.


Sujet(s)
Adipocytes/physiologie , Éléments activateurs (génétique) , Pléiotropie , Obésité/génétique , Adipocytes/cytologie , Troubles du rythme cardiaque/génétique , Troubles du rythme cardiaque/anatomopathologie , Maladies génétiques liées au chromosome X/génétique , Maladies génétiques liées au chromosome X/anatomopathologie , Étude d'association pangénomique , Gigantisme/génétique , Gigantisme/anatomopathologie , Cardiopathies congénitales/génétique , Cardiopathies congénitales/anatomopathologie , Humains , Hypothalamus/physiologie , Déficience intellectuelle/génétique , Déficience intellectuelle/anatomopathologie , MAP Kinase Kinase 5/génétique , Neurones/cytologie , Neurones/physiologie , Polymorphisme de nucléotide simple , Protein kinases/génétique , Locus de caractère quantitatif , Sarcoplasmic Reticulum Calcium-Transporting ATPases/génétique , Facteurs de transcription/génétique , Transcriptome
3.
Science ; 372(6546): 1085-1091, 2021 06 04.
Article de Anglais | MEDLINE | ID: mdl-34083488

RÉSUMÉ

Whereas coding variants often have pleiotropic effects across multiple tissues, noncoding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we investigated the genetic and functional architecture of a genomic region within the FTO gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting IRX3 and IRX5 from megabase distances. We demonstrate that these enhancers affect gene expression in multiple tissues, including adipose and brain, and impart regulatory effects during a restricted temporal window. Our data indicate that the genetic architecture of disease-associated loci may involve extensive pleiotropy, allelic heterogeneity, shared allelic effects across tissues, and temporally restricted effects.


Sujet(s)
Tissu adipeux/métabolisme , Encéphale/métabolisme , Protéines à homéodomaine/génétique , Obésité/génétique , Facteurs de transcription/génétique , Allèles , Alpha-ketoglutarate-dependent dioxygenase FTO/génétique , Alpha-ketoglutarate-dependent dioxygenase FTO/métabolisme , Animaux , Encéphale/embryologie , Lignée cellulaire , Chromatine/composition chimique , Chromatine/métabolisme , Développement embryonnaire , Éléments activateurs (génétique) , Comportement alimentaire , Préférences alimentaires , Régulation de l'expression des gènes , Haplotypes , Protéines à homéodomaine/métabolisme , Humains , Mâle , Souris , Souris de lignée C57BL , Neurones/métabolisme , Obésité/physiopathologie , Polymorphisme de nucléotide simple , Facteurs de transcription/métabolisme
4.
Elife ; 72018 07 10.
Article de Anglais | MEDLINE | ID: mdl-29988018

RÉSUMÉ

Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.


Sujet(s)
Maladies cardiovasculaires/génétique , Génome humain , Cellules souches pluripotentes induites/métabolisme , Myocytes cardiaques/métabolisme , Régions promotrices (génétique) , Régulation de l'expression des gènes , Réseaux de régulation génique , Locus génétiques , Étude d'association pangénomique , Génomique , Humains , Cellules souches pluripotentes induites/cytologie , Myocytes cardiaques/cytologie , Polymorphisme de nucléotide simple , Éléments de régulation transcriptionnelle
5.
Circ Res ; 123(4): 428-442, 2018 08 03.
Article de Anglais | MEDLINE | ID: mdl-29903739

RÉSUMÉ

RATIONALE: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type-specific requirement for TBX20 in early myocardial development remains to be explored. OBJECTIVE: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. METHODS AND RESULTS: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. CONCLUSIONS: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Atrium du coeur/embryologie , Myocytes cardiaques/métabolisme , Protéines à domaine boîte-T/génétique , Animaux , Lignée cellulaire , Prolifération cellulaire , Cellules cultivées , Phase G1 , Atrium du coeur/cytologie , Atrium du coeur/métabolisme , Souris , Souris de lignée C57BL , Mutation , Myocytes cardiaques/cytologie , Myocytes cardiaques/physiologie , Phase S , Protéines à domaine boîte-T/métabolisme
6.
Cell Rep ; 6(3): 541-52, 2014 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-24462291

RÉSUMÉ

Reactive oxygen species (ROS) are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2)/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.


Sujet(s)
Glycogen Synthase Kinase 3/métabolisme , Homéostasie , Complexes multiprotéiques/métabolisme , Espèces réactives de l'oxygène/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/enzymologie , Transduction du signal , Sphingolipides/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Acides/métabolisme , Cyclic AMP-Dependent Protein Kinases/métabolisme , Espace intracellulaire/métabolisme , Complexe-2 cible mécanistique de la rapamycine , Viabilité microbienne , Mitochondries/métabolisme , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/croissance et développement , Vacuoles/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...