Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Adv Sci (Weinh) ; 9(21): e2200566, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-35570404

RÉSUMÉ

To address the demands of emerging data-centric computing applications, ferroelectric field-effect transistors (Fe-FETs) are considered the forefront of semiconductor electronics owing to their energy and area efficiency and merged logic-memory functionalities. Herein, the fabrication and application of an Fe-FET, which is integrated with a van der Waals ferroelectrics heterostructure (CuInP2 S6 /α-In2 Se3 ), is reported. Leveraging enhanced polarization originating from the dipole coupling of CIPS and α-In2 Se3 , the fabricated Fe-FET exhibits a large memory window of 14.5 V at VGS = ±10 V, reaching a memory window to sweep range of ≈72%. Piezoelectric force microscopy measurements confirm the enhanced polarization-induced wider hysteresis loop of the double-stacked ferroelectrics compared to single ferroelectric layers. The Landau-Khalatnikov theory is extended to analyze the ferroelectric characteristics of a ferroelectric heterostructure, providing detailed explanations of the hysteresis behaviors and enhanced memory window formation. The fabricated Fe-FET shows nonvolatile memory characteristics, with a high on/off current ratio of over 106 , long retention time (>104 s), and stable cyclic endurance (>104 cycles). Furthermore, the applicability of the ferroelectrics heterostructure is investigated for artificial synapses and for hardware neural networks through training and inference simulation. These results provide a promising pathway for exploring low-dimensional ferroelectronics.

2.
Small ; 17(34): e2102595, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34272918

RÉSUMÉ

MXenes, an emerging class of two-dimensional (2D) transition metal carbides and nitrides, have attracted wide attention because of their fascinating properties required in functional electronics. Here, an atomic-switch-type artificial synapse fabricated on Ti3 C2 Tx MXene nanosheets with lots of surface functional groups, which successfully mimics the dynamics of biological synapses, is reported. Through in-depth analysis by X-ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, it is found that the synaptic dynamics originated from the gradual formation and annihilation of the conductive metallic filaments on the MXene surface with distributed functional groups. Subsequently, via training and inference tasks using a convolutional neural network for the Canadian-Institute-For-Advanced-Research-10 dataset, the applicability of the artificial MXene synapse to hardware neural networks is demonstrated.


Sujet(s)
Électronique , Synapses , Canada , , Titane
3.
Nanoscale ; 9(24): 8373-8379, 2017 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-28594423

RÉSUMÉ

Atomic switches, also known as conductive bridging random access memory devices, are resistive-switching devices that utilize the electrochemical reactions within a solid electrolyte between metal electrodes, and are considered essential components of future information storage and logic building blocks. In spite of their advantages as next generation switching components such as high density, large scalability, and low power consumption, the large deviations in their electrical properties and the instability of their switching behaviors hinder their application in information processing systems. Here, we report the fabrication of a uniform, low-power atomic switch with a bi-layer structure consisting of Ta2O5-x as the main switching layer (SL) and a relatively oxygen-deficient TaOx as an oxygen vacancy control layer (VCL). The depth profiles of the filaments in the bi-layer device were obtained by performing conductive atomic force microscopy to assess the improvements in uniformity, reliability, and electrical performance that result from the insertion of the VCL. The coefficient of variation of the high resistance state of the bi-layer device was found to be drastically reduced from 60.92% to 2.77% in the cycle-to-cycle measurements and from 82.73% to 4.85% in the device-to-device measurements when compared with the values obtained for a single-layer device. The bi-layer device also exhibits a forming-free low operation voltage of ∼0.4 V, a high on/off ratio of ∼106, and high reliability with 10 years data retention at 85 °C.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE