Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 14(1): 12689, 2024 06 03.
Article de Anglais | MEDLINE | ID: mdl-38830863

RÉSUMÉ

The release of sterilized insects to control pest populations has been used successfully during the past 6 decades, but application of the method in vertebrates has largely been overlooked or met with failure. Here, we demonstrate for the first time in fish, that a small population of sea lamprey (Petromyzon marinus; Class Agnatha), arguably one of the most impactful invasive fish in the world, can be controlled by the release of sterilized males. Specifically, the release of high numbers of sterile males (~ 1000's) into a geographically isolated population of adult sea lamprey resulted in the first multiyear delay in pesticide treatment since treatments began during 1966. Estimates of percent reduction in recruitment of age-1 sea lamprey due to sterile male release ranged from 7 to 99.9% with the precision of the estimate being low because of substantial year-to-year variability in larval density and distribution. Additional monitoring that accounts for recruitment variability in time and space would reduce uncertainty in the degree to which sterile male release reduces recruitment rates. The results are relevant to vertebrate pest control programs worldwide, especially as technical opportunities to sterilize vertebrates and manipulate sex ratios expand.


Sujet(s)
Espèce introduite , Petromyzon , Animaux , Mâle , Petromyzon/physiologie , Femelle , Lutte biologique contre les nuisibles/méthodes
2.
Evol Appl ; 15(3): 484-500, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-35386399

RÉSUMÉ

The sea lamprey (Petromyzon marinus) is an invasive species in the Great Lakes and the focus of a large control and assessment program. Current assessment methods provide information on the census size of spawning adult sea lamprey in a small number of streams, but information characterizing reproductive success of spawning adults is rarely available. We used RAD-capture sequencing to genotype single nucleotide polymorphism (SNP) loci for ~1600 sea lamprey larvae collected from three streams in northern Michigan (Black Mallard, Pigeon, and Ocqueoc Rivers). Larval genotypes were used to reconstruct family pedigrees, which were combined with Gaussian mixture analyses to identify larval age classes for estimation of spawning population size. Two complementary estimates of effective breeding size (N b), as well as the extrapolated minimum number of spawners (N s), were also generated for each cohort. Reconstructed pedigrees highlighted inaccuracies of cohort assignments from traditionally used mixture analyses. However, combining genotype-based pedigree information with length-at-age assignment of cohort membership greatly improved cohort identification accuracy. Population estimates across all three streams sampled in this study indicate a small number of successfully spawning adults when barriers were in operation, implying that barriers limited adult spawning numbers but were not completely effective at blocking access to spawning habitats. Thus, the large numbers of larvae present in sampled systems were a poor indicator of spawning adult abundance. Overall, pedigree-based N b and N s estimates provide a promising and rapid assessment tool for sea lamprey and other species.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...