Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 84
Filtrer
1.
Vaccine ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38890105

RÉSUMÉ

The first dengue "endgame" summit was held in Syracuse, NY over August 9 and 10, 2023. Organized and hosted by the Institute for Global Health and Translational Sciences at SUNY Upstate Medical University, the gathering brought together researchers, clinicians, drug and vaccine developers, government officials, and other key stakeholders in the dengue field for a highly collaborative and discussion-oriented event. The objective of the gathering was to discuss the current state of dengue around the world, what dengue "control" might look like, and what a potential roadmap might look like to achieve functional dengue control. Over the course of 7 sessions, speakers with a diverse array of expertise highlighted both current and historic challenges associated with dengue control, the state of dengue countermeasure development and deployment, as well as fundamental virologic, immunologic, and medical barriers to achieving dengue control. While sustained eradication of dengue was considered challenging, attendees were optimistic that significant reduction in the burden of dengue can be achieved by integration of vector control with effective application of therapeutics and vaccines.

2.
Am J Trop Med Hyg ; 111(1): 102-106, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38806045

RÉSUMÉ

The profiles of vaccine-induced dengue antibodies may differ from those produced following natural infection and could potentially interfere with the interpretation of diagnostic tests. We assessed anti-dengue IgG and IgM antibodies, and nonstructural protein 1 antigen profiles in the serum of adults who received a single dose of the tetravalent dengue vaccine TAK-003 as either an initially developed high-dose formulation or the standard approved formulation in a phase 2 study in Singapore (#NCT02425098). Immunoglobulin G and IgM profiles during the first 30 days postvaccination varied by baseline serostatus (microneutralization assay). Nonstructural protein 1 antigen was not detected in the serum of any participants. Vaccine-induced IgG and IgM antibodies can affect serological confirmation of subsequent dengue infection in vaccinees. These results highlight the limitations of using serological tests for dengue diagnosis, particularly in a postvaccination setting, and emphasize the need for more sensitive antigen- and molecular-based testing for accurate dengue diagnosis.


Sujet(s)
Anticorps antiviraux , Vaccins contre la dengue , Virus de la dengue , Dengue , Immunoglobuline G , Immunoglobuline M , Protéines virales non structurales , Humains , Vaccins contre la dengue/immunologie , Vaccins contre la dengue/administration et posologie , Immunoglobuline M/sang , Immunoglobuline G/sang , Dengue/prévention et contrôle , Dengue/immunologie , Dengue/diagnostic , Protéines virales non structurales/immunologie , Anticorps antiviraux/sang , Adulte , Virus de la dengue/immunologie , Mâle , Femelle , Singapour , Jeune adulte , Adulte d'âge moyen , Adolescent
4.
Clin Infect Dis ; 2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-37921609

RÉSUMÉ

BACKGROUND: Staphylococcus aureus bloodstream infection (bacteraemia) is traditionally treated with at least two weeks of IV antibiotics in adults, 3-7 days in children, and often longer for those with complicated disease. The current practice of treating S. aureus bacteraemia (SAB) with prolonged IV antibiotics (rather than oral antibiotics) is based on historical observational research and expert opinion. Prolonged IV antibiotic therapy has significant disadvantages for patients and healthcare systems, and there is growing interest in whether a switch to oral antibiotics following an initial period of IV therapy is a safe alternative for clinically stable patients. PROTOCOL: The early oral switch (EOS) domain of the S. aureus Network Adaptive Platform (SNAP) trial will assess early switch to oral antibiotics compared with continued IV treatment in clinically stable patients with SAB. The primary endpoint is 90-day all-cause mortality. Hospitalised SAB patients are assessed at platform day 7 +/- 2 (uncomplicated SAB) and day 14 +/-2 (complicated SAB) to determine their eligibility for randomisation to EOS (intervention) or continued IV treatment (current standard of care). DISCUSSION: Recruitment is occurring to the EOS domain of the SNAP trial. As of August 2023, 21% of all SNAP participants had been randomised to the EOS domain, a total of 264 participants across 77 centres, with an aim to recruit at least 1000 participants. We describe challenges and facilitators to enrolment in this domain to aid those planning similar trials.

5.
PLoS Biol ; 21(11): e3002351, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37934720

RÉSUMÉ

The COVID-19 pandemic has accelerated the development of vaccines for viral infections. However, a failure to integrate T cell immunity as a determinant of vaccine efficacy could curtail advancement of newer vaccines for pandemic preparedness.


Sujet(s)
COVID-19 , Vaccins , Vaccins antiviraux , Humains , Vaccins contre la COVID-19 , Pandémies/prévention et contrôle , SARS-CoV-2 , COVID-19/épidémiologie , COVID-19/prévention et contrôle
6.
mBio ; 14(4): e0129723, 2023 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-37530523

RÉSUMÉ

Hypervirulent Klebsiella pneumoniae causes liver abscess and potentially devastating metastatic complications. The majority of Klebsiella-induced liver abscess are caused by the CG23-I sublineage of hypervirulent Klebsiella pneumoniae. This and some other lineages possess a >200-kb virulence plasmid. We discovered a novel protein IroP nestled in the virulence plasmid-encoded salmochelin operon that cross-regulates and suppresses the promoter activity of chromosomal type 3 fimbriae (T3F) gene transcription. IroP is itself repressed by iron through the ferric uptake regulator. Iron-rich conditions increase T3F and suppress capsule mucoviscosity, leading to biofilm formation and cell adhesion. Conversely, iron-poor conditions cause a transcriptional switch to hypermucoid capsule production and T3F repression. The likely acquisition of iroP on mobile genetic elements and successful adaptive integration into the genetic circuitry of a major lineage of hypervirulent K. pneumoniae reveal a powerful example of plasmid chromosomal cross talk that confers an evolutionary advantage. Our discovery also addresses the conundrum of how the hypermucoid capsule that impedes adhesion could be regulated to facilitate biofilm formation and colonization. The acquired ability of the bacteria to alternate between a state favoring dissemination and one that favors colonization in response to iron availability through transcriptional regulation offers novel insights into the evolutionary success of this pathogen. IMPORTANCE Hypervirulent Klebsiella pneumoniae contributes to the majority of monomicrobial-induced liver abscess infections that can lead to several other metastatic complications. The large virulence plasmid is highly stable in major lineages, suggesting that it provides survival benefits. We discovered a protein IroP encoded on the virulence plasmid that suppresses expression of the type 3 fimbriae. IroP itself is regulated by iron, and we showed that iron regulates hypermucoid capsule production while inversely regulating type 3 fimbriae expression through IroP. The acquisition and integration of this inverse transcriptional switch between fimbriae and capsule mucoviscosity shows an evolved sophisticated plasmid-chromosomal cross talk that changes the behavior of hypervirulent K. pneumoniae in response to a key nutrient that could contribute to the evolutionary success of this pathogen.

7.
J Clin Invest ; 133(19)2023 10 02.
Article de Anglais | MEDLINE | ID: mdl-37561585

RÉSUMÉ

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in patients who are severely ill, and the pathophysiology of disease is thought to be immune mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens and often promote inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and nonhuman primates. Using a mouse model of MC deficiency, MC-dependent interstitial pneumonitis, hemorrhaging, and edema in the lung were observed during SARS-CoV-2 infection. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype in severe disease. MC activation in humans was confirmed through detection of MC-specific proteases, including chymase, the levels of which were significantly correlated with disease severity and with biomarkers of vascular dysregulation. These results support the involvement of MCs in lung tissue damage during SARS-CoV-2 infection in animal models and the association of MC activation with severe COVID-19 in humans, suggesting potential strategies for intervention.


Sujet(s)
COVID-19 , Humains , Animaux , COVID-19/anatomopathologie , Mastocytes/anatomopathologie , SARS-CoV-2 , Poumon/anatomopathologie , Inflammation/anatomopathologie
8.
Sci Transl Med ; 15(704): eadh3067, 2023 07 12.
Article de Anglais | MEDLINE | ID: mdl-37437017

RÉSUMÉ

The quest for an effective dengue vaccine has culminated in two approved vaccines and another that has completed phase 3 clinical trials. However, shortcomings exist in each, suggesting that the knowledge on dengue immunity used to develop these vaccines was incomplete. Vaccine trial findings could refine our understanding of dengue immunity, because these are experimentally derived, placebo-controlled data. Results from these trials suggest that neutralizing antibody titers alone are insufficient to inform protection against symptomatic infection, implicating a role for cellular immunity in protection. These findings have relevance for both future dengue vaccine development and application of current vaccines for maximal public health benefit.


Sujet(s)
Dengue , Immunité cellulaire , Humains , Santé publique , Dengue/prévention et contrôle
9.
Open Forum Infect Dis ; 10(7): ofad337, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37496601

RÉSUMÉ

Background: The Combination Antibiotic Therapy for Methicillin-Resistant Staphylococcus aureus (CAMERA2) trial ceased recruitment in July 2018, noting that a higher proportion of patients in the intervention arm (combination therapy) developed acute kidney injury (AKI) compared to the standard therapy (monotherapy) arm. We analyzed the long-term outcomes of participants in CAMERA2 to understand the impact of combination antibiotic therapy and AKI. Methods: Trial sites obtained additional follow-up data. The primary outcome was all-cause mortality, censored at death or the date of last known follow-up. Secondary outcomes included kidney failure or a reduction in kidney function (a 40% reduction in estimated glomerular filtration rate to <60 mL/minute/1.73 m2). To determine independent predictors of mortality in this cohort, adjusted hazard ratios were calculated using a Cox proportional hazards regression model. Results: This post hoc analysis included extended follow-up data for 260 patients. Overall, 123 of 260 (47%) of participants died, with a median population survival estimate of 3.4 years (235 deaths per 1000 person-years). Fifty-five patients died within 90 days after CAMERA2 trial randomization; another 68 deaths occurred after day 90. Using univariable Cox proportional hazards regression, mortality was not associated with either the assigned treatment arm in CAMERA2 (hazard ratio [HR], 0.84 [95% confidence interval [CI], .59-1.19]; P = .33) or experiencing an AKI (HR at 1 year, 1.04 [95% CI, .64-1.68]; P = .88). Conclusions: In this cohort of patients hospitalized with methicillin-resistant S aureus bacteremia, we found no association between either treatment arm of the CAMERA2 trial or AKI (using CAMERA2 trial definition) and longer-term mortality.

10.
Sci Rep ; 13(1): 9774, 2023 06 16.
Article de Anglais | MEDLINE | ID: mdl-37328522

RÉSUMÉ

A cost-minimization analysis was conducted for Klebsiella pneumoniae liver abscess (KLA) patients enrolled in a randomized controlled trial which found oral ciprofloxacin to be non-inferior to intravenous (IV) ceftriaxone in terms of clinical outcomes. Healthcare service utilization and cost data were obtained from medical records and estimated from self-reported patient surveys in a non-inferiority trial of oral ciprofloxacin versus IV ceftriaxone administered to 152 hospitalized adults with KLA in Singapore between November 2013 and October 2017. Total costs were evaluated by category and payer, and compared between oral and IV antibiotic groups over the trial period of 12 weeks. Among the subset of 139 patients for whom cost data were collected, average total cost over 12 weeks was $16,378 (95% CI, $14,620-$18,136) for the oral ciprofloxacin group and $20,569 (95% CI, $18,296-$22,842) for the IV ceftriaxone group, largely driven by lower average outpatient costs, as the average number of outpatient visits was halved for the oral ciprofloxacin group. There were no other statistically significant differences, either in inpatient costs or in other informal healthcare costs. Oral ciprofloxacin is less costly than IV ceftriaxone in the treatment of Klebsiella liver abscess, largely driven by reduced outpatient service costs.Trial registration: ClinicalTrials.gov Identifier NCT01723150 (7/11/2012).


Sujet(s)
Antibactériens , Abcès du foie , Adulte , Humains , Antibactériens/usage thérapeutique , Ceftriaxone/usage thérapeutique , Klebsiella pneumoniae , Ciprofloxacine/usage thérapeutique , Abcès du foie/traitement médicamenteux , Coûts et analyse des coûts , Administration par voie orale
11.
Front Immunol ; 14: 1135979, 2023.
Article de Anglais | MEDLINE | ID: mdl-36969244

RÉSUMÉ

Vaccination induces an adaptive immune response that protects against infectious diseases. A defined magnitude of adaptive immune response that correlates with protection from the disease of interest, or correlates of protection (CoP), is useful for guiding vaccine development. Despite mounting evidence for the protective role of cellular immunity against viral diseases, studies on CoP have almost exclusively focused on humoral immune responses. Moreover, although studies have measured cellular immunity following vaccination, no study has defined if a "threshold" of T cells, both in frequency and functionality, is needed to reduce infection burden. We will thus conduct a double-blind, randomized clinical trial in 56 healthy adult volunteers, using the licensed live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE-YF17D) vaccines. These vaccines share the entire non-structural and capsid proteome where the majority of the T cell epitopes reside. The neutralizing antibody epitopes, in contrast, are found on the structural proteins which are not shared between the two vaccines and are thus distinct from one another. Study participants will receive JE-YF17D vaccination followed by YF17D challenge, or YF17D vaccination followed by JE-YF17D challenge. A separate cohort of 14 healthy adults will receive the inactivated Japanese Encephalitis virus (JEV) vaccine followed by YF17D challenge that controls for the effect of cross-reactive flaviviral antibodies. We hypothesize that a strong T cell response induced by YF17D vaccination will reduce JE-YF17D RNAemia upon challenge, as compared to JE-YF17D vaccination followed by YF17D challenge. The expected gradient of YF17D-specific T cell abundance and functionality would also allow us to gain insight into a T cell threshold for controlling acute viral infections. The knowledge gleaned from this study could guide the assessment of cellular immunity and vaccine development. Clinical trial registration: Clinicaltrials.gov, NCT05568953.


Sujet(s)
Recherche biomédicale , Encéphalite japonaise , Vaccins contre l'encéphalite japonaise , Adulte , Humains , Anticorps antiviraux , Immunité cellulaire , Antigènes viraux , Essais contrôlés randomisés comme sujet
12.
EBioMedicine ; 89: 104472, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-36801619

RÉSUMÉ

BACKGROUND: Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS: We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS: The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION: Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING: K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.


Sujet(s)
COVID-19 , Humains , Sujet âgé , Chaines alpha des antigènes HLA-DR/génétique , SARS-CoV-2 , Agranulocytes , Pronostic
13.
Br J Neurosurg ; 37(6): 1859-1862, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-34240635

RÉSUMÉ

BACKGROUND: Dengue fever is highly prevalent in the Asia-Pacific region. Here we present an unusual case of dengue fever in a patient with a ruptured cerebral aneurysm causing subarachnoid (SAH) and intraventricular haemorrhage (IVH) and discuss the implications of dengue-related thrombopathies on the management of SAH and its complications. CASE REPORT: A 56-year-old female with a two-day history of high-grade pyrexia and myalgia presented with sudden-onset drowsiness (presenting Glasgow Coma Scale, GCS: E1V1M4). Imaging revealed extensive SAH and IVH due to a ruptured right middle cerebral artery (MCA) aneurysm, with extensive vasospasm. Blood test revealed thrombocytopenia and a positive NS-1 antigen. She subsequently suffered from two episodes of re-rupture of the aneurysm and elevated intracranial pressure which required a decompressive craniectomy in addition to coilingof the MCA aneurysm. Cerebral perfusion and rheology were maintained with the triple-H therapy. Her GCS improved to E4V1M6, but remained aphasic. DISCUSSIONS: Thrombocytopenia and deranged platelet functions in dengue infection might affect the stability of clot and increase the risk of re-rupture of aneurysm. Immediate securement of the aneurysm was paramount. In cases of severe dengue, plasma leakage could lead to intravascular depletion, and coupled with haemoconcentration and hypotension would further increase the risk for vasospasm.


Sujet(s)
Rupture d'anévrysme , Dengue , Anévrysme intracrânien , Hémorragie meningée , Thrombopénie , Humains , Femelle , Adulte d'âge moyen , Hémorragie meningée/diagnostic , Hémorragie meningée/étiologie , Hémorragie meningée/chirurgie , Anévrysme intracrânien/complications , Anévrysme intracrânien/diagnostic , Anévrysme intracrânien/chirurgie , Hémorragie cérébrale/complications , Rupture d'anévrysme/complications , Rupture d'anévrysme/diagnostic , Rupture d'anévrysme/chirurgie , Thrombopénie/complications , Dengue/complications , Dengue/diagnostic , Dengue/thérapie
15.
Front Microbiol ; 13: 1043049, 2022.
Article de Anglais | MEDLINE | ID: mdl-36483199

RÉSUMÉ

Introduction: COVID-19 has a wide disease spectrum ranging from asymptomatic to severe. While humoral immune responses are critical in preventing infection, the immune mechanisms leading to severe disease, and the identification of biomarkers of disease progression and/or resolution of the infection remains to be determined. Methods: Plasma samples were obtained from infections during the initial wave of ancestral wildtype SARS-CoV-2 and from vaccine breakthrough infections during the wave of Delta variant, up to six months post infection. The spike-specific antibody profiles were compared across different severity groups and timepoints. Results: We found an association between spike-specific IgM, IgA and IgG and disease severity in unvaccinated infected individuals. In addition to strong IgG1 and IgG3 response, patients with severe disease develop a robust IgG2 and IgG4 response. A comparison of the ratio of IgG1 and IgG3 to IgG2 and IgG4 showed that disease progression is associated with a smaller ratio in both the initial wave of WT and the vaccine breakthrough Delta infections. Time-course analysis revealed that smaller (IgG1 and IgG3)/(IgG2 and IgG4) ratio is associated with disease progression, while the reverse associates with clinical recovery. Discussion: While each IgG subclass is associated with disease severity, the balance within the four IgG subclasses may affect disease outcome. Acute disease progression or infection resolution is associated with a specific immunological phenotype that is conserved in both the initial wave of WT and the vaccine breakthrough Delta infections.

16.
NPJ Vaccines ; 7(1): 161, 2022 Dec 13.
Article de Anglais | MEDLINE | ID: mdl-36513697

RÉSUMÉ

Coronavirus disease-19 (Covid-19) pandemic have demonstrated the importantance of vaccines in disease prevention. Self-amplifying mRNA vaccines could be another option for disease prevention if demonstrated to be safe and immunogenic. Phase 1 of this randomized, double-blinded, placebo-controlled trial (N = 42) assessed the safety, tolerability, and immunogenicity in healthy young and older adults of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N = 64) tested two-doses of ARCT-021 given 28 days apart. During phase 1, ARCT-021 was well tolerated up to one 7.5 µg dose and two 5.0 µg doses. Local solicited AEs, namely injection-site pain and tenderness were more common in ARCT-021vaccinated, while systemic solicited AEs, mainly fatigue, headache and myalgia were reported in 62.8% and 46.4% of ARCT-021 and placebo recipients, respectively. Seroconversion rate for anti-S IgG was 100% in all cohorts, except for the 1 µg one-dose in younger adults and the 7.5 µg one-dose in older adults. Anti-S IgG and neutralizing antibody titers showed a general increase with increasing dose, and overlapped with titers in Covid-19 convalescent patients. T-cell responses were also observed in response to stimulation with S-protein peptides. Taken collectively, ARCT-021 is immunogenic and has favorable safety profile for further development.

17.
NPJ Vaccines ; 7(1): 154, 2022 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-36443317

RÉSUMÉ

Remarkable potency has been demonstrated for mRNA vaccines in reducing the global burden of the ongoing COVID-19 pandemic. An alternative form of the mRNA vaccine is the self-amplifying mRNA (sa-mRNA) vaccine, which encodes an alphavirus replicase that self-amplifies the full-length mRNA and SARS-CoV-2 spike (S) transgene. However, early-phase clinical trials of sa-mRNA COVID-19 vaccine candidates have questioned the potential of this platform to develop potent vaccines. We examined the immune gene response to a candidate sa-mRNA vaccine against COVID-19, ARCT-021, and compared our findings to the host response to other forms of vaccines. In blood samples from healthy volunteers that participated in a phase I/II clinical trial, greater induction of transcripts involved in Toll-like receptor (TLR) signalling, antigen presentation and complement activation at 1 day post-vaccination was associated with higher anti-S antibody titers. Conversely, transcripts involved in T-cell maturation at day 7 post-vaccination informed the magnitude of eventual S-specific T-cell responses. The transcriptomic signature for ARCT-021 vaccination strongly correlated with live viral vector vaccines, adjuvanted vaccines and BNT162b2 1 day post-vaccination. Moreover, the ARCT-021 signature correlated with day 7 YF17D live-attenuated vaccine transcriptomic responses. Altogether, our findings show that sa-mRNA vaccination induces innate immune responses that are associated with the development of adaptive immunity from other forms of vaccines, supporting further development of this vaccine platform for clinical application.

18.
Front Immunol ; 13: 978760, 2022.
Article de Anglais | MEDLINE | ID: mdl-36172383

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected half a billion people, including vulnerable populations such as cancer patients. While increasing evidence supports the persistence of SARS-CoV-2 months after a negative nasopharyngeal swab test, the effects on long-term immune memory and cancer treatment are unclear. In this report, we examined post-COVID-19 tissue-localized immune responses in a hepatocellular carcinoma (HCC) patient and a colorectal cancer (CRC) patient. Using spatial whole-transcriptomic analysis, we demonstrated spatial profiles consistent with a lymphocyte-associated SARS-CoV-2 response (based on two public COVID-19 gene sets) in the tumors and adjacent normal tissues, despite intra-tumor heterogeneity. The use of RNAscope and multiplex immunohistochemistry revealed that the spatial localization of B cells was significantly associated with lymphocyte-associated SARS-CoV-2 responses within the spatial transcriptomic (ST) niches showing the highest levels of virus. Furthermore, single-cell RNA sequencing data obtained from previous (CRC) or new (HCC) ex vivo stimulation experiments showed that patient-specific SARS-CoV-2 memory B cells were the main contributors to this positive association. Finally, we evaluated the spatial associations between SARS-CoV-2-induced immunological effects and immunotherapy-related anti-tumor immune responses. Immuno-predictive scores (IMPRES) revealed consistent positive spatial correlations between T cells/cytotoxic lymphocytes and the predicted immune checkpoint blockade (ICB) response, particularly in the HCC tissues. However, the positive spatial correlation between B cells and IMPRES score was restricted to the high-virus ST niche. In addition, tumor immune dysfunction and exclusion (TIDE) analysis revealed marked T cell dysfunction and inflammation, alongside low T cell exclusion and M2 tumor-associated macrophage infiltration. Our results provide in situ evidence of SARS-CoV-2-generated persistent immunological memory, which could not only provide tissue protection against reinfection but may also modulate the tumor microenvironment, favoring ICB responsiveness. As the number of cancer patients with COVID-19 comorbidity continues to rise, improved understanding of the long-term immune response induced by SARS-CoV-2 and its impact on cancer treatment is much needed.


Sujet(s)
COVID-19 , Carcinome hépatocellulaire , Tumeurs du foie , Comorbidité , Humains , Inhibiteurs de points de contrôle immunitaires , Mémoire immunologique , Morbidité , SARS-CoV-2 , Transcriptome , Microenvironnement tumoral/génétique
19.
PLoS Negl Trop Dis ; 16(8): e0010724, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35981059

RÉSUMÉ

Long Covid has raised awareness of the potentially disabling chronic sequelae that afflicts patients after acute viral infection. Similar syndromes of post-infectious sequelae have also been observed after other viral infections such as dengue, but their true prevalence and functional impact remain poorly defined. We prospectively enrolled 209 patients with acute dengue (n = 48; one with severe dengue) and other acute viral respiratory infections (ARI) (n = 161), and followed them up for chronic sequelae up to one year post-enrolment, prior to the onset of the Covid-19 pandemic. Baseline demographics and co-morbidities were balanced between both groups except for gender, with more males in the dengue cohort (63% vs 29%, p<0.001). Except for the first visit, data on symptoms were collected remotely using a purpose-built mobile phone application. Mental health outcomes were evaluated using the validated SF-12v2 Health Survey. Almost all patients (95.8% of dengue and 94.4% of ARI patients) experienced at least one symptom of fatigue, somnolence, headache, concentration impairment or memory impairment within the first week of enrolment. Amongst patients with at least 3-months of follow-up, 18.0% in the dengue cohort and 14.6% in the ARI cohort experienced persistent symptoms. The median month-3 SF-12v2 Mental Component Summary Score was lower in patients who remained symptomatic at 3 months and beyond, compared to those whose symptoms fully resolved (47.7 vs. 56.0, p<0.001), indicating that patients who self-reported persistence of symptoms also experienced functionally worse mental health. No statistically significant difference in age, gender distribution or hospitalisation status was observed between those with and without chronic sequelae. Our findings reveal an under-appreciated burden of post-infection chronic sequelae in dengue and ARI patients. They call for studies to define the pathophysiology of this condition, and determine the efficacy of both vaccines as well as antiviral drugs in preventing such sequelae.


Sujet(s)
COVID-19 , Dengue , Infections de l'appareil respiratoire , COVID-19/complications , Convalescence , Dengue/complications , Dengue/épidémiologie , Évolution de la maladie , Humains , Mâle , Pandémies , Infections de l'appareil respiratoire/complications , Infections de l'appareil respiratoire/épidémiologie , Syndrome de post-COVID-19
20.
Eur J Nucl Med Mol Imaging ; 49(13): 4516-4528, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-35876869

RÉSUMÉ

PURPOSE: Zika (ZIKV) is a viral inflammatory disease affecting adults, children, and developing fetuses. It is endemic to tropical and sub-tropical countries, resulting in half the global population at risk of infection. Despite this, there are no approved therapies or vaccines against ZIKV disease. Non-invasive imaging biomarkers are potentially valuable tools for studying viral pathogenesis, prognosticating host response to disease, and evaluating in vivo efficacy of experimental therapeutic interventions. In this study, we evaluated [18F]fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET) as an imaging biomarker of ZIKV disease in a mouse model and correlated metabolic tracer tissue uptake with real-time biochemical, virological, and inflammatory features of tissue infection. METHODS: [18F]FDG-PET/CT imaging was performed in an acute, lethal ZIKV mouse infection model, at increasing stages of disease severity. [18F]FDG-PET findings were corroborated with ex vivo wholemount-tissue autoradiography and tracer biodistribution studies. Tracer uptake was also correlated with in situ tissue disease status, including viral burden and inflammatory response. Immune profiling of the spleen by flow cytometry was performed to identify the immune cell subsets driving tissue pathology and enhancing tracer uptake in ZIKV disease. RESULTS: Foci of increased [18F]FDG uptake were consistently detected in lymphoid tissues-particularly the spleen-of ZIKV-infected animals. Splenic uptake increased with disease severity, and corroborated findings in tissue pathology. Increased splenic uptake also correlated with increased viral replication and elevated expression of pro-inflammatory cytokines within these tissues. ZIKV-infected spleens were characterized by increased infiltration of myeloid cells, as well as increased proliferation of both myeloid and lymphoid cells. The increased cell proliferation correlated with increased tracer uptake in the spleen. Our findings support the use of [18F]FDG as an imaging biomarker to detect and track ZIKV disease in real time and highlight the dependency of affected tissue on the nature of the viral infection. CONCLUSION: [18F]FDG uptake in the spleen is a useful surrogate for interrogating in situ tissue viral burden and inflammation status in this ZIKV murine model.


Sujet(s)
Infection par le virus Zika , Virus Zika , Animaux , Souris , Infection par le virus Zika/imagerie diagnostique , Infection par le virus Zika/métabolisme , Infection par le virus Zika/anatomopathologie , Virus Zika/métabolisme , Fluorodésoxyglucose F18/métabolisme , Tomographie par émission de positons couplée à la tomodensitométrie/méthodes , Distribution tissulaire , Tomodensitométrie , Tomographie par émission de positons , Tissu lymphoïde/métabolisme , Tissu lymphoïde/anatomopathologie , Inflammation/imagerie diagnostique , Inflammation/métabolisme , Modèles animaux de maladie humaine , Marqueurs biologiques/métabolisme , Cytokines
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE