Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Environ Technol ; 30(9): 893-910, 2009 Aug.
Article de Anglais | MEDLINE | ID: mdl-19803328

RÉSUMÉ

Trials were conducted aboard the tanker Seabulk Mariner to test a natural product, SeaKleen, as a biocide controlling non-indigenous populations of plankton and bacteria in ballast water. SeaKleen was dosed into matched ballast tanks at two different concentrations, 0.8 mg L(-1) active ingredient (a.i.) and 1.6 mg L(-1) a.i. during ballasting off the Oregon coast during a three-day passage to Prince William Sound, Alaska. Live organism counts from treated ballast water were compared with those from untreated (control tank) water collected from the same source location. Shipboard chemical analyses were made to verify dose and quantify chemical degradation and residuals following dilution. Results indicated that both SeaKleen doses resulted in complete zooplankton and phytoplankton mortality and that the higher dose (1.6 mg L(-1) a.i.) caused a two-log removal of culturable bacteria over a 92 h grow-out period. Spectrophotometry confirmed initial dosing to within 5% of nominal values. Shipboard bioassays were conducted using larval fish (Cyprinodon variegatus), brine shrimp (Artemia salina) and the bioluminescent dinoflagellate Pyrocystis lunula. Exposure of the test organisms to water drawn from treated ballast tanks 48 h after SeaKleen was added to the tanks resulted in 100% mortalities in Cyprinodon and Pyrocystis at both doses. Corresponding mortalities for Artemia larvae were 100% and 60% for high and low SeaKleen doses, respectively. Toxicity testing of treated water, subjected to varying dilutions, indicated that residual toxicity to even the most sensitive organisms would be eliminated once the discharge had dispersed beyond 100 feet from the vessel.


Sujet(s)
Bactéries/effets des médicaments et des substances chimiques , Plancton/effets des médicaments et des substances chimiques , Navires , Stérilisation/méthodes , Ménadione/pharmacologie , Pollution de l'eau/prévention et contrôle , Purification de l'eau/méthodes , Survie cellulaire/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Océan Pacifique , Microbiologie de l'eau
2.
J Anal Toxicol ; 21(1): 12-6, 1997.
Article de Anglais | MEDLINE | ID: mdl-9013286

RÉSUMÉ

Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.


Sujet(s)
Médecine légale/méthodes , Chromatographie gazeuse-spectrométrie de masse/méthodes , Amphétamines/analyse , Cocaïne/analogues et dérivés , Cocaïne/analyse , Dronabinol/analyse , Humains , Stupéfiants/analyse , Phencyclidine/analyse , Contrôle de qualité , Sensibilité et spécificité , Détection d'abus de substances/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE