Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 103
Filtrer
1.
Alzheimers Dement ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38885334

RÉSUMÉ

INTRODUCTION: Corticobasal syndrome (CBS) can result from underlying Alzheimer's disease (AD) pathologies. Little is known about the utility of blood plasma metrics to predict positron emission tomography (PET) biomarker-confirmed AD in CBS. METHODS: A cohort of eighteen CBS patients (8 amyloid beta [Aß]+; 10 Aß-) and 8 cognitively unimpaired (CU) individuals underwent PET imaging and plasma analysis. Plasma concentrations were compared using a Kruskal-Wallis test. Spearman correlations assessed relationships between plasma concentrations and PET uptake. RESULTS: CBS Aß+ group showed a reduced Aß42/40 ratio, with elevated phosphorylated tau (p-tau)181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) concentrations, while CBS Aß- group only showed elevated NfL concentration compared to CU. Both p-tau181 and GFAP were able to differentiate CBS Aß- from CBS Aß+ and showed positive associations with Aß and tau PET uptake. DISCUSSION: This study supports use of plasma p-tau181 and GFAP to detect AD in CBS. NfL shows potential as a non-specific disease biomarker of CBS regardless of underlying pathology. HIGHLIGHTS: Plasma phosphorylated tau (p-tau)181 and glial fibrillary acidic protein (GFAP) concentrations differentiate corticobasal syndrome (CBS) amyloid beta (Aß)- from CBS Aß+. Plasma neurofilament light concentrations are elevated in CBS Aß- and Aß+ compared to controls. Plasma p-tau181 and GFAP concentrations were associated with Aß and tau positron emission tomography (PET) uptake. Aß42/40 ratio showed a negative correlation with Aß PET uptake.

2.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38902234

RÉSUMÉ

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer , Astrocytes , Barrière hémato-encéphalique , Péricytes , Protéine Smad-3 , Facteur de croissance endothéliale vasculaire de type A , Danio zébré , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Humains , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/anatomopathologie , Protéine Smad-3/métabolisme , Protéine Smad-3/génétique , Astrocytes/métabolisme , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Facteur de croissance endothéliale vasculaire de type A/génétique , Animaux , Péricytes/métabolisme , Péricytes/anatomopathologie , Mâle , Cellules souches pluripotentes induites/métabolisme , Femelle , Sujet âgé , Transcriptome , Encéphale/métabolisme , Encéphale/anatomopathologie , Encéphale/vascularisation , Sujet âgé de 80 ans ou plus , Modèles animaux de maladie humaine
3.
bioRxiv ; 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38746191

RÉSUMÉ

The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.

4.
Sci Adv ; 10(14): eadk3674, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38569027

RÉSUMÉ

The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aß42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aß42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aß42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Humains , Sujet âgé , Maladie d'Alzheimer/diagnostic , Maladie d'Alzheimer/étiologie , Maladie d'Alzheimer/liquide cérébrospinal , Dysfonctionnement cognitif/diagnostic , Dysfonctionnement cognitif/étiologie , Protéines tau , Marqueurs biologiques , Peptides bêta-amyloïdes , Fragments peptidiques
6.
Acta Neuropathol Commun ; 12(1): 25, 2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38336940

RÉSUMÉ

Alzheimer's disease (AD), characterized by the deposition of amyloid-ß (Aß) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aß and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aß40, Aß42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aß40, Aß42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aß42 and pTau181 levels. Overall, our findings suggest that different patterns of Aß, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.


Sujet(s)
Maladie d'Alzheimer , Apolipoprotéines E , Tauopathies , Humains , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/anatomopathologie , Amyloïde , Peptides bêta-amyloïdes , Apolipoprotéine E4/génétique , Apolipoprotéines E/génétique , Protéines tau , Tauopathies/anatomopathologie
8.
Mol Psychiatry ; 29(3): 809-819, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38135757

RÉSUMÉ

ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.


Sujet(s)
Transporteurs ABC , Cellules souches pluripotentes induites , Métabolisme lipidique , Souris knockout , Mitochondries , Neurones , Mitochondries/métabolisme , Neurones/métabolisme , Humains , Animaux , Métabolisme lipidique/physiologie , Souris , Cellules souches pluripotentes induites/métabolisme , Transporteurs ABC/métabolisme , Transporteurs ABC/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/génétique , Encéphale/métabolisme
9.
Stem Cell Res Ther ; 14(1): 289, 2023 10 05.
Article de Anglais | MEDLINE | ID: mdl-37798772

RÉSUMÉ

BACKGROUND: Mesenchymal stromal cells (MSCs) have a dynamic secretome that plays a critical role in tissue repair and regeneration. However, studying the MSC secretome in mixed-culture disease models remains challenging. This study aimed to develop a mutant methionyl-tRNA synthetase-based toolkit (MetRSL274G) to selectively profile secreted proteins from MSCs in mixed-culture systems and demonstrate its potential for investigating MSC responses to pathological stimulation. METHODS: We used CRISPR/Cas9 homology-directed repair to stably integrate MetRSL274G into cells, enabling the incorporation of the non-canonical amino acid, azidonorleucine (ANL), and facilitating selective protein isolation using click chemistry. MetRSL274G was integrated into both in H4 cells and induced pluripotent stem cells (iPSCs) for a series of proof-of-concept studies. Following iPSC differentiation into induced-MSCs, we validated their identity and co-cultured MetRSL274G-expressing iMSCs with naïve or lipopolysaccharide (LPS)-treated THP-1 cells. We then profiled the iMSC secretome using antibody arrays. RESULTS: Our results showed successful integration of MetRSL274G into targeted cells, allowing specific isolation of proteins from mixed-culture environments. We also demonstrated that the secretome of MetRSL274G-expressing iMSCs can be differentiated from that of THP-1 cells in co-culture and is altered when co-cultured with LPS-treated THP-1 cells compared to naïve THP-1 cells. CONCLUSIONS: The MetRSL274G-based toolkit we have generated enables selective profiling of the MSC secretome in mixed-culture disease models. This approach has broad applications for examining not only MSC responses to models of pathological conditions, but any other cell type that can be differentiated from iPSCs. This can potentially reveal novel MSC-mediated repair mechanisms and advancing our understanding of tissue regeneration processes.


Sujet(s)
Cellules souches mésenchymateuses , Methionine-tRNA ligase , Methionine-tRNA ligase/génétique , Methionine-tRNA ligase/métabolisme , Lipopolysaccharides , Sécrétome , Cellules souches mésenchymateuses/métabolisme , Acides aminés
10.
Neuron ; 111(18): 2775-2777, 2023 09 20.
Article de Anglais | MEDLINE | ID: mdl-37734320

RÉSUMÉ

Wu and Dong et al.1 report that hepatic soluble epoxide hydrolase (sEH) manipulation impacts amyloid-ß (Aß) deposits and cognitive impairment in mouse models for Alzheimer's disease (AD), suggesting that hepatic sEH activity is a promising therapeutic target to treat AD.


Sujet(s)
Maladie d'Alzheimer , Epoxide hydrolase , Animaux , Souris , Foie , Encéphale , Peptides bêta-amyloïdes
11.
Sci Adv ; 9(37): eadi3647, 2023 09 15.
Article de Anglais | MEDLINE | ID: mdl-37713494

RÉSUMÉ

Neuron-derived extracellular vesicles (NDEVs) are potential biomarkers of neurological diseases although their reliable molecular target is not well established. Here, we demonstrate that ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3) is abundantly expressed in extracellular vesicles (EVs) isolated from induced human neuron, brain, cerebrospinal fluid, and plasma in comparison with the presumed NDEV markers NCAM1 and L1CAM by using super-resolution microscopy and biochemical assessments. Proteomic analysis of immunoprecipitated ATP1A3+ brain-derived EVs shows higher enrichment of synaptic markers and cargo proteins relevant to Alzheimer's disease (AD) compared to NCAM1+ or LICAM+ EVs. Single particle analysis shows the elevated amyloid-ß positivity in ATP1A3+ EVs from AD plasma, providing better diagnostic prediction of AD over other plasma biomarkers. Thus, ATP1A3 is a reliable target to isolate NDEV from biofluids for diagnostic research.


Sujet(s)
Maladie d'Alzheimer , Vésicules extracellulaires , Humains , Protéomique , Encéphale , Molécules d'adhérence cellulaire neurales , Neurones , Sodium-Potassium-Exchanging ATPase
12.
J Alzheimers Dis ; 95(2): 399-405, 2023.
Article de Anglais | MEDLINE | ID: mdl-37545238

RÉSUMÉ

The prevalence of Alzheimer's disease is greater in women, but the underlying mechanisms remain to be elucidated. We herein demonstrated that α-secretase ADAM10 was downregulated and ADAM10 inhibitor sFRP1 was upregulated in 5xFAD mice. While there were no sex effects on ADAM10 protein and sFRP1 mRNA levels, female 5xFAD and age-matched non-transgenic mice exhibited higher levels of sFRP1 protein than corresponding male mice. Importantly, female 5xFAD mice accumulated more Aß than males, and sFRP1 protein levels were positively associated with Aß42 levels in 5xFAD mice. Our study suggests that sFRP1 is associated with amyloid pathology in a sex-dependent manner.


Sujet(s)
Maladie d'Alzheimer , Précurseur de la protéine bêta-amyloïde , Animaux , Femelle , Mâle , Souris , Protéine ADAM10/génétique , Protéine ADAM10/métabolisme , Maladie d'Alzheimer/anatomopathologie , Amyloïde/métabolisme , Peptides bêta-amyloïdes/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Précurseur de la protéine bêta-amyloïde/métabolisme , Protéines amyloïdogènes/métabolisme , Aspartic acid endopeptidases/métabolisme , Encéphale/anatomopathologie , Modèles animaux de maladie humaine , Souris transgéniques , Régulation positive
13.
Stem Cell Res Ther ; 14(1): 214, 2023 08 21.
Article de Anglais | MEDLINE | ID: mdl-37605285

RÉSUMÉ

BACKGROUND: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types. METHODS: We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90. RESULTS: We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/ß-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. CONCLUSIONS: Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.


Sujet(s)
Apolipoprotéines E , Cerveau , Cellules souches pluripotentes induites , Humains , Apolipoprotéine E4 , Apolipoprotéines E/génétique , Différenciation cellulaire , Organoïdes , Cerveau/métabolisme
14.
Mol Neurodegener ; 18(1): 46, 2023 07 11.
Article de Anglais | MEDLINE | ID: mdl-37434208

RÉSUMÉ

Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.


Sujet(s)
Maladie d'Alzheimer , Maladies des petits vaisseaux cérébraux , Démence vasculaire , Humains , Causalité , Facteurs de risque , Maladies des petits vaisseaux cérébraux/complications
15.
Res Sq ; 2023 May 03.
Article de Anglais | MEDLINE | ID: mdl-37205579

RÉSUMÉ

Background Mesenchymal stromal cells (MSCs) have a dynamic secretome that plays a critical role in tissue repair and regeneration. However, studying the MSC secretome in mixed-culture disease models remains challenging. This study aimed to develop a mutant methionyl-tRNA synthetase-based toolkit (MetRS L274G ) to selectively profile secreted proteins from MSCs in mixed-culture systems and demonstrate its potential for investigating MSC responses to pathological stimulation. Methods We used CRISPR/Cas9 homology-directed repair to stably integrate MetRS L274G into cells, enabling the incorporation of the non-canonical amino acid, azidonorleucine (ANL), and facilitating selective protein isolation using click chemistry. MetRS L274G was integrated into both in H4 cells and induced pluripotent stem cells (iPSCs) for a series of proof-of-concept studies. Following iPSC differentiation into induced-MSCs, we validated their identity and co-cultured MetRS L274G -expressing iMSCs with naïve or lipopolysaccharide- (LPS) treated THP-1 cells. We then profiled the iMSC secretome using antibody arrays. Results Our results showed successful integration of MetRS L274G into targeted cells, allowing specific isolation of proteins from mixed-culture environments. We also demonstrated that the secretome of MetRS L274G -expressing iMSCs can be differentiated from that of THP-1 cells in co-culture, and is altered when co-cultured with LPS-treated THP-1 cells compared to naïve THP-1 cells. Conclusions The MetRS L274G -based toolkit we have generated enables selective profiling of the MSC secretome in mixed-culture disease models. This approach has broad applications for examining not only MSC responses to models of pathological conditions, but any other cell type that can be differentiated from iPSCs. This can potentially reveal novel MSC-mediated repair mechanisms and advancing our understanding of tissue regeneration processes.

16.
JCI Insight ; 8(7)2023 04 10.
Article de Anglais | MEDLINE | ID: mdl-37036005

RÉSUMÉ

Cerebrovasculature is critical in maintaining brain homeostasis; its dysregulation often leads to vascular cognitive impairment and dementia (VCID) during aging. VCID is the second most prevalent cause of dementia in the elderly, after Alzheimer's disease (AD), with frequent cooccurrence of VCID and AD. While multiple factors are involved in the pathogenesis of AD and VCID, APOE4 increases the risk for both diseases. A major apolipoprotein E (apoE) receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in vascular mural cells (pericytes and smooth muscle cells). Here, we investigated how deficiency of vascular mural cell LRP1 affects the cerebrovascular system and cognitive performance using vascular mural cell-specific Lrp1-KO mice (smLrp1-/-) in a human APOE3 or APOE4 background. We found that spatial memory was impaired in the 13- to 16-month-old APOE4 smLrp1-/- mice but not in the APOE3 smLrp1-/- mice, compared with their respective littermate control mice. These disruptions in the APOE4 smLrp1-/- mice were accompanied with excess paravascular glial activation and reduced cerebrovascular collagen IV. In addition, blood-brain barrier (BBB) integrity was disrupted in the APOE4 smLrp1-/- mice. Together, our results suggest that vascular mural cell LRP1 modulates cerebrovasculature integrity and function in an APOE genotype-dependent manner.


Sujet(s)
Maladie d'Alzheimer , Apolipoprotéine E4 , Humains , Souris , Animaux , Sujet âgé , Nourrisson , Apolipoprotéine E4/génétique , Apolipoprotéine E3/métabolisme , Apolipoprotéines E/métabolisme , Barrière hémato-encéphalique/métabolisme , Maladie d'Alzheimer/anatomopathologie , Protéine-1 apparentée au récepteur des LDL/métabolisme
17.
Mol Neurodegener ; 18(1): 2, 2023 01 07.
Article de Anglais | MEDLINE | ID: mdl-36609403

RÉSUMÉ

BACKGROUND: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aß) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aß40, Aß42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS: Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS: We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS: Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.


Sujet(s)
Maladie d'Alzheimer , Humains , Maladie d'Alzheimer/métabolisme , Étude d'association pangénomique , Peptides bêta-amyloïdes/métabolisme , Encéphale/métabolisme , Plaque amyloïde/anatomopathologie , Phénotype , Apolipoprotéines E/métabolisme , Protéines tau/métabolisme
18.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Article de Anglais | MEDLINE | ID: mdl-36269859

RÉSUMÉ

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Sujet(s)
Transporteurs ABC , Maladie d'Alzheimer , Céramides , Animaux , Souris , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Transporteurs ABC/génétique , Transporteurs ABC/métabolisme , Céramides/métabolisme , Chromatographie en phase liquide , Étude d'association pangénomique , Lactosylcéramides , Métabolome , Souris knockout , Sphingomyéline , Spectrométrie de masse en tandem
19.
Mol Neurodegener ; 17(1): 57, 2022 09 02.
Article de Anglais | MEDLINE | ID: mdl-36056345

RÉSUMÉ

BACKGROUND: The aggregation and spread of α-synuclein (α-Syn) protein and related neuronal toxicity are the key pathological features of Parkinson's disease (PD) and Lewy body dementia (LBD). Studies have shown that pathological species of α-Syn and tau can spread in a prion-like manner between neurons, although these two proteins have distinct pathological roles and contribute to different neurodegenerative diseases. It is reported that the low-density lipoprotein receptor-related protein 1 (LRP1) regulates the spread of tau proteins; however, the molecular regulatory mechanisms of α-Syn uptake and spread, and whether it is also regulated by LRP1, remain poorly understood. METHODS: We established LRP1 knockout (LRP1-KO) human induced pluripotent stem cells (iPSCs) isogenic lines using a CRISPR/Cas9 strategy and generated iPSC-derived neurons (iPSNs) to test the role of LRP1 in α-Syn uptake. We treated the iPSNs with fluorescently labeled α-Syn protein and measured the internalization of α-Syn using flow cytometry. Three forms of α-Syn species were tested: monomers, oligomers, and pre-formed fibrils (PFFs). To examine whether the lysine residues of α-Syn are involved in LRP1-mediated uptake, we capped the amines of lysines on α-Syn with sulfo-NHS acetate and then measured the internalization. We also tested whether the N-terminus of α-Syn is critical for LRP1-mediated internalization. Lastly, we investigated the role of Lrp1 in regulating α-Syn spread with a neuronal Lrp1 conditional knockout (Lrp1-nKO) mouse model. We generated adeno-associated viruses (AAVs) that allowed for distinguishing the α-Syn expression versus spread and injected them into the hippocampus of six-month-old Lrp1-nKO mice and the littermate wild type (WT) controls. The spread of α-Syn was evaluated three months after the injection. RESULTS: We found that the uptake of both monomeric and oligomeric α-Syn was significantly reduced in iPSNs with LRP1-KO compared with the WT controls. The uptake of α-Syn PFFs was also inhibited in LRP1-KO iPSNs, albeit to a much lesser extent compared to α-Syn monomers and oligomers. The blocking of lysine residues on α-Syn effectively decreased the uptake of α-Syn in iPSNs and the N-terminus of α-Syn was critical for LRP1-mediated α-Syn uptake. Finally, in the Lrp1-nKO mice, the spread of α-Syn was significantly reduced compared with the WT littermates. CONCLUSIONS: We identified LRP1 as a key regulator of α-Syn neuronal uptake, as well as an important mediator of α-Syn spread in the brain. This study provides new knowledge on the physiological and pathological role of LRP1 in α-Syn trafficking and pathology, offering insight for the treatment of synucleinopathies.


Sujet(s)
Cellules souches pluripotentes induites , Protéine-1 apparentée au récepteur des LDL/métabolisme , alpha-Synucléine/métabolisme , Animaux , Humains , Cellules souches pluripotentes induites/métabolisme , Nourrisson , Souris , Maladie de Parkinson/métabolisme , Synapsine , Protéines tau/métabolisme
20.
Nat Neurosci ; 25(8): 1020-1033, 2022 08.
Article de Anglais | MEDLINE | ID: mdl-35915180

RÉSUMÉ

The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer , Cellules souches pluripotentes induites , Maladie d'Alzheimer/métabolisme , Animaux , Apolipoprotéine E3/génétique , Apolipoprotéine E3/métabolisme , Apolipoprotéine E4/génétique , Apolipoprotéine E4/métabolisme , Apolipoprotéines E/génétique , Encéphale/métabolisme , Cognition , Humains , Cellules souches pluripotentes induites/métabolisme , Souris , Souris transgéniques , Isoformes de protéines/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...