Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Gamme d'année
1.
Preprint de Anglais | medRxiv | ID: ppmedrxiv-22274395

RÉSUMÉ

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilised pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID- 19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in- house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterised samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.

2.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-489083

RÉSUMÉ

As COVID-19 persists, severe acquired respiratory syndrome coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor-binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA-binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic {beta}-coronaviruses ({beta}-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2 and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation while the open, infectious conformation is LA-free. Electron tomography of SARS-CoV-2 infected cells reveals that LA-treatment inhibits viral replication, resulting in fewer, deformed virions. Our results establish FFA-binding as a hallmark of pathogenic {beta}-CoV infection and replication, highlighting potential antiviral strategies. One-Sentence SummaryFree fatty acid-binding is conserved in pathogenic {beta}-coronavirus S proteins and suppresses viral infection and replication.

3.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-443384

RÉSUMÉ

As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants which is of particular concern due to their potential for increased transmissibility and pathology. In addition to this entrenched variant diversity in circulation, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriS{Delta} variant, originally identified as a viral subpopulation by passaging SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike glycoprotein an eight amino-acid deletion encompassing the furin recognition motif and S1/S2 cleavage site. Here, we elucidate the structure, function and molecular dynamics of this variant spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Moreover, our study reveals long-range allosteric communication between functional regions within the spike that differ in wild-type and deletion variant. Our results support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.

4.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-439284

RÉSUMÉ

Many host pathogen interactions such as human viruses (including non-SARS-coronaviruses) rely on attachment to host cell-surface glycans. There are conflicting reports about whether the Spike protein of SARS-CoV-2 binds to sialic acid commonly found on host cell-surface N-linked glycans. In the absence of a biochemical assay, the ability to analyze the binding of glycans to heavily- modified proteins and resolve this issue is limited. Classical Saturation Transfer Difference (STD) NMR can be confounded by overlapping sugar resonances that compound with known experimental constraints. Here we present universal saturation transfer analysis (uSTA), an NMR method that builds on existing approaches to provide a general and automated workflow for studying protein-ligand interactions. uSTA reveals that B-origin-lineage-SARS-CoV-2 spike trimer binds sialoside sugars in an end on manner and modelling guided by uSTA localises binding to the spike N-terminal domain (NTD). The sialylated-polylactosamine motif is found on tetraantennary human N-linked-glycoproteins in deeper lung and may have played a role in zoonosis. Provocatively, sialic acid binding is abolished by mutations in some subsequent SARS- CoV-2 variants-of-concern. A very high resolution cryo-EM structure confirms the NTD location and end on mode; it rationalises the effect of NTD mutations and the structure-activity relationship of sialic acid analogues. uSTA is demonstrated to be a robust, rapid and quantitative tool for analysis of binding, even in the most demanding systems. Extended AbstractThe surface proteins found on both pathogens and host cells mediate entry (and exit) and influence disease progression and transmission. Both types can bear host-generated post- translational modifications such as glycosylation that are essential for function but can confound biophysical methods used for dissecting key interactions. Several human viruses (including non- SARS-coronaviruses) attach to host cell-surface N-linked glycans that include forms of sialic acid (sialosides). There remains, however, conflicting evidence as to if or how SARS-associated coronaviruses might use such a mechanism. Here, we demonstrate quantitative extension of saturation transfer protein NMR methods to a complete mathematical model of the magnetization transfer caused by interactions between protein and ligand. The method couples objective resonance-identification via a deconvolution algorithm with Bloch-McConnell analysis to enable a structural, kinetic and thermodynamic analysis of ligand binding beyond previously-perceived limits of exchange rates, concentration or system. Using an automated and openly available workflow this universal saturation transfer analysis (uSTA) can be readily-applied in a range of even heavily-modified systems in a general manner to now obtain quantitative binding interaction parameters (KD, kEx). uSTA proved critical in mapping direct interactions between natural sialoside sugar ligands and relevant virus-surface attachment glycoproteins - SARS-CoV-2-spike and influenza-H1N1-haemagglutinin variants - by quantitating ligand signal in spectral regions otherwise occluded by resonances from mobile protein glycans (that also include sialosides). In B- origin-lineage-SARS-CoV-2 spike trimer end on-binding to sialoside sugars was revealed contrasting with extended surface-binding for heparin sugar ligands; uSTA-derived constraints used in structural modelling suggested sialoside-glycan binding sites in a beta-sheet-rich region of spike N-terminal domain (NTD). Consistent with this, uSTA-glycan binding was minimally- perturbed by antibodies that neutralize the ACE2-binding domain (RBD) but strongly disrupted in spike from the B1.1.7/alpha and B1.351/beta variants-of-concern, which possess hotspot mutations in the NTD. Sialoside binding in B-origin-lineage-NTD was unequivocally pinpointed by cryo-EM to a site that is created from residues that are notably deleted in variants (e.g. H69,V70,Y145 in alpha). An analysis of beneficial genetic variances in cohorts of patients from early 2020 suggests a model in which this site in the NTD of B-origin-lineage-SARS-CoV-2 (but not in alpha/beta-variants) may have exploited a specific sialylated-polylactosamine motif found on tetraantennary human N-linked-glycoproteins in deeper lung. Together these confirm a novel binding mode mediated by the unusual NTD of SARS-CoV-2 and suggest how it may drive virulence and/or zoonosis via modulation of glycan attachment. Since cell-surface glycans are widely relevant to biology and pathology, uSTA can now provide ready, quantitative, widespread analysis of complex, host-derived and post-translationally modified proteins with putative ligands relevant to disease even in previously confounding complex systems.

5.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-423721

RÉSUMÉ

Severe coronavirus disease 2019 (COVID-19) manifests as a life-threatening microvascular syndrome. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the Spike (S) protein to engage with its receptors and infect host cells. To date, it is still not known whether heart vascular pericytes (PCs) are infected by SARS-CoV-2, and if the S protein alone provokes PC dysfunction. Here, we aimed to investigate the effects of the S protein on primary human cardiac PC signalling and function. Results show, for the first time, that cardiac PCs are not permissive to SARS-CoV-2 infection in vitro, whilst a recombinant S protein alone elicits functional alterations in PCs. This was documented as: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors responsible for EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation and rescued PC function in the presence of the S protein. In conclusion, our findings suggest that circulating S protein prompts vascular PC dysfunction, potentially contributing to establishing microvascular injury in organs distant from the site of infection. This mechanism may have clinical and therapeutic implications. Clinical perspectiveO_LISevere COVID-19 manifests as a microvascular syndrome, but whether SARS-CoV-2 infects and damages heart vascular pericytes (PCs) remains unknown. C_LIO_LIWe provide evidence that cardiac PCs are not infected by SARS-CoV-2. Importantly, we show that the recombinant S protein alone elicits cellular signalling through the CD147 receptor in cardiac PCs, thereby inducing cell dysfunction and microvascular disruption in vitro. C_LIO_LIThis study suggests that soluble S protein can potentially propagate damage to organs distant from sites of infection, promoting microvascular injury. Blocking the CD147 receptor in patients may help protect the vasculature not only from infection, but also from the collateral damage caused by the S protein. C_LI

6.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-158584

RÉSUMÉ

COVID-19, caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms driving high infectivity, broad tissue tropism and severe pathology. Our cryo-EM structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains (RBDs) tightly and specifically bind the essential free fatty acid (FFA) linoleic acid (LA) in three composite binding pockets. The pocket also appears to be present in the highly pathogenic coronaviruses SARS-CoV and MERS-CoV. Lipid metabolome remodeling is a key feature of coronavirus infection, with LA at its core. LA metabolic pathways are central to inflammation, immune modulation and membrane fluidity. Our structure directly links LA and S, setting the stage for interventions targeting LA binding and metabolic remodeling by SARS-CoV-2. One Sentence SummaryA direct structural link between SARS-CoV-2 spike and linoleic acid, a key molecule in inflammation, immune modulation and membrane fluidity.

7.
Int J Appl Basic Med Res ; 7(1): 20-25, 2017.
Article de Anglais | MEDLINE | ID: mdl-28251103

RÉSUMÉ

BACKGROUND: Spontaneous abortion or miscarriage is defined as the loss of a clinically recognized pregnancy that occurs before 20 weeks of gestational age. Changes in thyroid function can impact greatly on reproductive function before, during, and after conception. Oxidative stress affects both implantation and early embryo development by modifying the key of transcription. Malondialdehyde (MDA) is a major breakdown product of split off from lipid peroxidation. Superoxide dismutase (SOD) is responsible for detoxification of superoxide anion and required for normal health and reproduction. AIM: The aim of this study was to define the involvement of thyroid hormones, MDA and SOD levels and to establish MDA levels as an index of lipid peroxidation in women with spontaneous abortion by comparing the results with healthy pregnant females as controls. MATERIALS AND METHODS: A cross-sectional case-control study was designed with two groups of women with 30 each in healthy pregnancy and with spontaneous abortion. RESULTS: Demographic characteristics such as maternal age, paternal age, gestational age, body mass index, waist-hip ratio as well as biochemical parameters such as blood pressure, hemoglobin (Hb), sugar levels were found to be similar in both the participating groups. Characteristics like gravida and parity were found to be higher in the study group and differ significantly from control group. Spontaneous abortion before 24 weeks of gestational age was found to be associated with significant increase in mean serum thyroid stimulating hormone (TSH) (P = 0.0115) and MDA (P = 0.0001) levels and a significant decrease in mean serum T3 (P = 0.0003) and SOD (P = 0.0005) levels. The linear (Pearson) correlation analysis demonstrated a significant positive correlation of TSH with MDA and negative correlation with SOD in women with spontaneous abortion. CONCLUSION: The study demonstrates that altered thyroid profile, increased lipid peroxidation in terms of increased MDA levels and decreased SOD levels might be involved in the termination of otherwise wanted pregnancy.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE