Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Endocrinol Diabetes Metab ; 7(4): e487, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38867382

RÉSUMÉ

INTRODUCTION: High-fat diet (HFD) consumption and being exposed to daily psychological stress, common environmental factors in modern lifestyle, play an important role on metabolic disorders such as glucose homeostasis impairment. The aim of this study was to investigate the effects of high-fat diet (HFD) and psychological stress combination on metabolic response to chronic psychological stress in male rats. METHOD: Male Wistar rats were divided into HFD, and normal diet (ND) groups and then into stress and nonstress subgroups. The diets were applied for 5 weeks, and psychological stress was induced for 7 consecutive days. Then, blood samples were taken to measure glucose, insulin, free fatty acids (FFA), and leptin and corticosterone concentrations. Subsequently, glucose-stimulated insulin release from pancreatic isolated islets was assessed. RESULTS: HFD did not significantly change fasting plasma glucose, insulin and corticosterone levels, whereas increased plasma leptin (7.05 ± 0.33) and FFA (p < 0.01) levels and impaired glucose tolerance. Additionally, HFD and stress combination induced more profound glucose intolerance associated with increased plasma corticosterone (p < 0.01) and leptin (8.63 ± 0.38) levels. However, insulin secretion from isolated islets did not change in the presence of high-fat diet and/or stress. CONCLUSION: HFD should be considered as an intensified factor of metabolic impairments caused by chronic psychological stress.


Sujet(s)
Glycémie , Corticostérone , Alimentation riche en graisse , Insuline , Leptine , Rat Wistar , Stress psychologique , Animaux , Mâle , Stress psychologique/métabolisme , Alimentation riche en graisse/effets indésirables , Rats , Corticostérone/sang , Insuline/sang , Leptine/sang , Glycémie/métabolisme , Acide gras libre/sang , Ilots pancréatiques/métabolisme , Intolérance au glucose/étiologie , Intolérance au glucose/métabolisme
2.
J Diabetes Metab Disord ; 22(2): 1511-1518, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37975089

RÉSUMÉ

Purpose: Chronic consumption of high-fat foods during the reproductive period may endanger the dams' metabolic homeostasis and might adversely affect pregnancy outcome. In this regard the present study aimed to investigate the effect of long-term high-fat feeding on pancreatic glucose transporter-2 (GLUT2) protein expression and isolated islets glucose-stimulated insulin secretion in Wistar rat dams. Materials and methods: Female rats were randomly divided into normal (N) and high-fat (HF; containing cow butter) diet groups and consumed their respective diets for 10 weeks (from prepregnancy to the end of lactation). After lactation, fasting plasma concentrations of glucose and insulin were measured to calculate HOMA-IR index, then intraperitoneal glucose tolerance test (IPGTT) was performed. Moreover, the pancreatic GLUT2 protein expression and insulin secretion from isolated islets at basal (5.6 mM) and stimulated (16.7 mM) glucose concentrations were assessed. Results: In HF group compared to N group, the plasma insulin level increased, whereas the plasma glucose level did not change in fasting state. Accordingly, the HOMA-IR index increased in HF fed animals. Furthermore, the IPGTT revealed glucose intolerance based on the plasma glucose and insulin results. Also, the pancreatic GLUT2 expression and isolated islets insulin secretion, in response to high glucose concentration, were decreased. Conclusion: The chronic consumption of high-fat foods during prepregnancy, pregnancy, and lactation periods can lead to glucose intolerance, insulin resistance, and inhibition of pancreatic GLUT2 expression, which impairs glucose homeostasis. Therefore, it is crucial to carefully monitor the diet composition of dams during this critical period. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-023-01274-6.

3.
Arch Physiol Biochem ; 127(5): 406-413, 2021 Oct.
Article de Anglais | MEDLINE | ID: mdl-31368362

RÉSUMÉ

This study examined foot shock stress effects, during weaning, on pancreatic HB9 protein expression in young adult male rats in the presence or absence of adulthood stress. The pups were divided into Control, Early life stress, Young adult stress, and Early + young adult stress groups. Plasma corticosterone, insulin, glucose, and TNF-α concentrations, and pancreatic HB9 protein expression were assessed. At 2 weeks of age, stress increased plasma corticosterone level. During young adulthood, plasma TNF-α and glucose concentrations increased, whereas plasma insulin and pancreatic HB9 protein levels decreased in Early life stress group. Whereas, Early + young adulthood stress group showed no change in the study parameters, except for plasma corticosterone and insulin concentrations. Overall, early life stress reduced pancreatic HB9 protein expression possibly by elevating plasma corticosterone and TNF-α levels in early life and adulthood, respectively. However, combined with adulthood stress, HB9 protein expression increased to the level of Control.


Sujet(s)
Corticostérone , Pancréas , Stress psychologique , Facteur de nécrose tumorale alpha , Animaux , Rats , Rat Wistar
4.
Nutr Metab (Lond) ; 14: 20, 2017.
Article de Anglais | MEDLINE | ID: mdl-28261314

RÉSUMÉ

BACKGROUND: The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. METHODS: Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. RESULTS: According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. CONCLUSION: Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.

5.
J Zhejiang Univ Sci B ; 17(9): 728-32, 2016 Sep.
Article de Anglais | MEDLINE | ID: mdl-27604865

RÉSUMÉ

This study attempts to further clarify the potential effects of maternal high-fat (HF) diet on glucose homeostasis in dams and young adult male rat offspring. Female rats were divided into control (CON dams) and HF (HF dams) diet groups, which received the diet 4 weeks prior to and through pregnancy and lactation periods. Blood samples were taken to determine metabolic parameters, then an intraperitoneal glucose tolerance test (IPGTT) was performed. Maternal HF diet increased intra-abdominal fat mass and plasma corticosterone level, but decreased leptin concentration in dams. In HF offspring intra-abdominal fat mass, plasma leptin, and corticosterone levels decreased. Following IPGTT, the plasma insulin level of HF dams was higher than the controls. In HF offspring plasma insulin level was not significantly different from the controls, but a steeper decrease of their plasma glucose concentration was observed.


Sujet(s)
Alimentation riche en graisse/effets indésirables , Insuline/métabolisme , Exposition maternelle , Aliment pour animaux , Animaux , Matières grasses alimentaires , Femelle , Glucose/métabolisme , Hyperglycémie provoquée , Homéostasie , Insulinorésistance , Lactation , Leptine/sang , Mâle , Obésité/complications , Grossesse , Gestation animale , Rats
6.
Endocrine ; 48(2): 493-503, 2015 Mar.
Article de Anglais | MEDLINE | ID: mdl-25030548

RÉSUMÉ

Early stressful experiences may predispose organisms to certain disorders, including those of metabolic defects. This study aimed to explore the effects of early life stress on pancreatic insulin secretion and glucose transporter 2 (GLUT2) protein levels in stressed young adult male rats. Foot shock stress was induced in early life (at 2 weeks of age) and/or in young adulthood (at 8-10 weeks of age) for five consecutive days. Blood samples were taken before and after stress exposure in young adult rats. At the end of the experiment, glucose tolerance, isolated islets' insulin secretion, and pancreatic amounts of GLUT2 protein were measured. Our results show that early life stress has no effect on basal plasma corticosterone levels and adrenal weight, either alone or combined with young adulthood stress, but that early life + young adulthood stress could prevent weight gain, and cause an increase in basal plasma glucose and insulin. The homeostasis model assessment of insulin resistance index did not increase, when the rats were subjected to early life stress alone, but increased when combined with young adulthood stress. Moreover, glucose tolerance was impaired by the combination of early life + young adult stress. There was a decrease in islet's insulin secretion in rats subjected to early life stress in response to 5.6 mM glucose concentration, but an increase with a concentration of 16.7 mM glucose. However, in rats subjected to early life + young adulthood stress, islet's insulin secretion increased in response to both the levels of glucose concentrations. GLUT2 protein levels decreased in response to early life stress and early life + young adulthood stress, but there was a greater decrease in the early life stress group. In conclusion, perhaps early life stress sensitizes the body to stressors later in life, making it more susceptible to metabolic syndrome only when the two are in combination.


Sujet(s)
Transporteur de glucose de type 2/métabolisme , Insuline/métabolisme , Ilots pancréatiques/métabolisme , Stress psychologique/métabolisme , Facteurs âges , Animaux , Corticostérone/sang , Hyperglycémie provoquée , Sécrétion d'insuline , Mâle , Rats , Rat Wistar
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE