Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Geobiology ; 22(1): e12585, 2024.
Article de Anglais | MEDLINE | ID: mdl-38385603

RÉSUMÉ

The nitrogen isotopic composition (15 N/14 N ratio, or δ15 N) of enameloid-bound organic matter (δ15 NEB ) in shark teeth was recently developed to investigate the biogeochemistry and trophic structures (i.e., food webs) of the ancient ocean. Using δ15 NEB , we present the first nitrogen isotopic evidence for trophic differences between shark taxa from a single fossil locality. We analyze the teeth of four taxa (Meristodonoides, Ptychodus, Scapanorhynchus, and Squalicorax) from the Late Cretaceous (83-84 Ma) Trussells Creek site in Alabama, USA, and compare the N isotopic findings with predictions from tooth morphology, the traditional method for inferring shark paleo-diets. Our δ15 NEB data indicate two distinct trophic groups, with averages separated by 6.1 ± 2.1‰. The lower group consists of Meristodonoides and Ptychodus, and the higher group consists of Scapanorhynchus and Squalicorax (i.e., lamniforms). This δ15 NEB difference indicates a 1.5 ± 0.5 trophic-level separation between the two groups, a finding that is in line with paleontological predictions of a higher trophic level for these lamniforms over Meristodonoides and Ptychodus. However, the δ15 NEB of Meristodonoides is lower than suggested by tooth morphology, although consistent with mechanical tests suggesting that higher trophic-level bony fishes were not a major component of their diet. Further, δ15 NEB indicates that the two sampled lamniform taxa fed at similar trophic levels despite their different inferred tooth functions. These two findings suggest that tooth morphology alone may not always be a sufficient indicator of dietary niche. The large trophic separation revealed by the δ15 NEB offset leaves open the possibility that higher trophic-level lamniforms, such as those measured here, preyed upon smaller, lower trophic-level sharks like Meristodonoides.


Sujet(s)
Requins , Animaux , Isotopes du carbone/analyse , Requins/anatomie et histologie , Golfe du Mexique , Chaine alimentaire , Isotopes de l'azote/analyse
2.
Sci Adv ; 8(25): eabl6529, 2022 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-35731884

RÉSUMÉ

Trophic position is a fundamental characteristic of animals, yet it is unknown in many extinct species. In this study, we ground-truth the 15N/14N ratio of enameloid-bound organic matter (δ15NEB) as a trophic level proxy by comparison to dentin collagen δ15N and apply this method to the fossil record to reconstruct the trophic level of the megatooth sharks (genus Otodus). These sharks evolved in the Cenozoic, culminating in Otodus megalodon, a shark with a maximum body size of more than 15 m, which went extinct 3.5 million years ago. Very high δ15NEB values (22.9 ± 4.4‰) of O. megalodon from the Miocene and Pliocene show that it occupied a higher trophic level than is known for any marine species, extinct or extant. δ15NEB also indicates a dietary shift in sharks of the megatooth lineage as they evolved toward the gigantic O. megalodon, with the highest trophic level apparently reached earlier than peak size.

3.
Science ; 364(6438): 386-389, 2019 04 26.
Article de Anglais | MEDLINE | ID: mdl-31023923

RÉSUMÉ

The million-year variability of the marine nitrogen cycle is poorly understood. Before 57 million years (Ma) ago, the 15N/14N ratio (δ15N) of foraminifera shell-bound organic matter from three sediment cores was high, indicating expanded water column suboxia and denitrification. Between 57 and 50 Ma ago, δ15N declined by 13 to 16 per mil in the North Pacific and by 3 to 8 per mil in the Atlantic. The decline preceded global cooling and appears to have coincided with the early stages of the Asia-India collision. Warm, salty intermediate-depth water forming along the Tethys Sea margins may have caused the expanded suboxia, ending with the collision. From 50 to 35 Ma ago, δ15N was lower than modern values, suggesting widespread sedimentary denitrification on broad continental shelves. δ15N rose at 35 Ma ago, as ice sheets grew, sea level fell, and continental shelves narrowed.


Sujet(s)
Cycle de l'azote , Océans et mers , Oxygène/métabolisme , Eau de mer/composition chimique , Anaérobiose , Sédiments géologiques/composition chimique , Isotopes de l'azote/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE