Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Article de Anglais | MEDLINE | ID: mdl-38936830

RÉSUMÉ

The use of halophilic bacteria in industrial chemical and food production has received great interest because of the unique properties of these bacteria; however, their safety remains under investigation. Halomonas sp. KM-1 intracellularly stores poly-D-ß-hydroxybutyric acid under aerobic conditions and successively secretes D-ß-hydroxybutyric acid (D-BHB) under microaerobic conditions. Therefore, we tested the safety of Halomonas sp. KM-1-derived D-BHB and the impurities generated during D-BHB manufacturing at a 100-fold increased concentration in acute tests using mice and daily intake of 16.0 g D-BHB in Japanese adults for 12 weeks. In the mice test, there were no abnormalities in the body weights or health of mice fed the purified D-BHB or its impurities. In the Japanese adult test, blood parameters and body condition showed no medically problematic fluctuations. These findings indicate that Halomonas sp. KM-1 is safe and can be used for commercial production of D-BHB and its derivatives.

2.
Biosci Biotechnol Biochem ; 88(6): 696-704, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38520162

RÉSUMÉ

We focused on the production of docosahexaenoic acid (DHA)-containing microbial lipids by Aurantiochytrium sp. using of defatted soybean (DS) as a nitrogen source. Defatted soybean is a plant biomass that could provide a sustainable supply at a low cost. Results showed that Aurantiochytrium sp. could not directly assimilate the DS as a nitrogen source but could grow well in a medium containing DS fermented with rice malt. When cultivated in a fermented DS (FDS) medium, Aurantiochytrium sp. showed vigorous growth with the addition of sufficient sulfate and chloride ions as inorganic nutrients without seawater salt. A novel isolated Aurantiochytrium sp. 6-2 showed 15.8 ± 3.4 g/L DHA productivity (in 54.8 ± 12.1 g/L total fatty acid production) in 1 L of the FDS medium. Therefore, DHA produced by Aurantiochytrium sp. using FDS enables a stable and sustainable DHA supply and could be an alternative source of natural DHA derived from fish oil.


Sujet(s)
Aliment pour animaux , Acide docosahexaénoïque , Fermentation , Glycine max , Azote , Straménopiles , Acide docosahexaénoïque/biosynthèse , Acide docosahexaénoïque/métabolisme , Glycine max/métabolisme , Glycine max/croissance et développement , Azote/métabolisme , Straménopiles/métabolisme , Straménopiles/croissance et développement , Aliment pour animaux/analyse , Animaux , Poissons/métabolisme , Biomasse , Milieux de culture/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE