Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
IEEE Trans Biomed Eng ; 71(7): 2253-2264, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38376982

RÉSUMÉ

OBJECTIVE: To leverage machine learning (ML) for fast selection of optimal regularization parameter in constrained image reconstruction. METHODS: Constrained image reconstruction is often formulated as a regularization problem and selecting a good regularization parameter value is an essential step. We solved this problem using an ML-based approach by leveraging the finding that for a specific constrained reconstruction problem defined for a fixed class of image functions, the optimal regularization parameter value is weakly subject-dependent and the dependence can be captured using few experimental data. The proposed method has four key steps: a) solution of a given constrained reconstruction problem for a few (say, 3) pre-selected regularization parameter values, b) extraction of multiple approximated quality metrics from the initial reconstructions, c) predicting the true quality metrics values from the approximated values using pre-trained neural networks, and d) determination of the optimal regularization parameter by fusing the predicted quality metrics. RESULTS: The effectiveness of the proposed method was demonstrated in two constrained reconstruction problems. Compared with L-curve-based method, the proposed method determined the regularization parameters much faster and produced substantially improved reconstructions. Our method also outperformed state-of-the-art learning-based methods when trained with limited experimental data. CONCLUSION: This paper demonstrates the feasibility and improved reconstruction quality by using machine learning to determine the regularization parameter in constrained reconstruction. SIGNIFICANCE: The proposed method substantially reduces the computational burden of the traditional methods (e.g., L-curve) or relaxes the requirement of large training data by modern learning-based methods, thus enhancing the practical utility of constrained reconstruction.


Sujet(s)
Algorithmes , Traitement d'image par ordinateur , Apprentissage machine , Traitement d'image par ordinateur/méthodes , Humains , Fantômes en imagerie , , Imagerie par résonance magnétique/méthodes
2.
NMR Biomed ; 36(12): e5011, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37528575

RÉSUMÉ

Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its ability to reduce scan time. Nevertheless, the reconstruction problem remains a thorny issue due to its ill posed nature. Recently, diffusion models, especially score-based generative models, have demonstrated great potential in terms of algorithmic robustness and flexibility of utilization. Moreover, a unified framework through the variance exploding stochastic differential equation is proposed to enable new sampling methods and further extend the capabilities of score-based generative models. Therefore, by taking advantage of the unified framework, we propose a k-space and image dual-domain collaborative universal generative model (DD-UGM), which combines the score-based prior with a low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrate the noise reduction and detail preservation abilities of the proposed method. Moreover, DD-UGM can reconstruct data of different frames by only training a single frame image, which reflects the flexibility of the proposed model.


Sujet(s)
Traitement d'image par ordinateur , Imagerie par résonance magnétique , Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes , Algorithmes
3.
IEEE Trans Med Imaging ; 42(12): 3540-3554, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37428656

RÉSUMÉ

In recent times, model-driven deep learning has evolved an iterative algorithm into a cascade network by replacing the regularizer's first-order information, such as the (sub)gradient or proximal operator, with a network module. This approach offers greater explainability and predictability compared to typical data-driven networks. However, in theory, there is no assurance that a functional regularizer exists whose first-order information matches the substituted network module. This implies that the unrolled network output may not align with the regularization models. Furthermore, there are few established theories that guarantee global convergence and robustness (regularity) of unrolled networks under practical assumptions. To address this gap, we propose a safeguarded methodology for network unrolling. Specifically, for parallel MR imaging, we unroll a zeroth-order algorithm, where the network module serves as a regularizer itself, allowing the network output to be covered by a regularization model. Additionally, inspired by deep equilibrium models, we conduct the unrolled network before backpropagation to converge to a fixed point and then demonstrate that it can tightly approximate the actual MR image. We also prove that the proposed network is robust against noisy interferences if the measurement data contain noise. Finally, numerical experiments indicate that the proposed network consistently outperforms state-of-the-art MRI reconstruction methods, including traditional regularization and unrolled deep learning techniques.


Sujet(s)
Algorithmes , Traitement d'image par ordinateur , Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes
4.
Magn Reson Med ; 90(5): 2089-2101, 2023 11.
Article de Anglais | MEDLINE | ID: mdl-37345702

RÉSUMÉ

PURPOSE: To develop a machine learning-based method for estimation of both transmitter and receiver B1 fields desired for correction of the B1 inhomogeneity effects in quantitative brain imaging. THEORY AND METHODS: A subspace model-based machine learning method was proposed for estimation of B1t and B1r fields. Probabilistic subspace models were used to capture scan-dependent variations in the B1 fields; the subspace basis and coefficient distributions were learned from pre-scanned training data. Estimation of the B1 fields for new experimental data was achieved by solving a linear optimization problem with prior distribution constraints. We evaluated the performance of the proposed method for B1 inhomogeneity correction in quantitative brain imaging scenarios, including T1 and proton density (PD) mapping from variable-flip-angle spoiled gradient-echo (SPGR) data as well as neurometabolic mapping from MRSI data, using phantom, healthy subject and brain tumor patient data. RESULTS: In both phantom and healthy subject data, the proposed method produced high-quality B1 maps. B1 correction on SPGR data using the estimated B1 maps produced significantly improved T1 and PD maps. In brain tumor patients, the proposed method produced more accurate and robust B1 estimation and correction results than conventional methods. The B1 maps were also applied to MRSI data from tumor patients and produced improved neurometabolite maps, with better separation between pathological and normal tissues. CONCLUSION: This work presents a novel method to estimate B1 variations using probabilistic subspace models and machine learning. The proposed method may make correction of B1 inhomogeneity effects more robust in practical applications.


Sujet(s)
Tumeurs du cerveau , Imagerie par résonance magnétique , Humains , Imagerie par résonance magnétique/méthodes , Algorithmes , Encéphale/imagerie diagnostique , Cartographie cérébrale/méthodes , Tumeurs du cerveau/imagerie diagnostique , Fantômes en imagerie , Protons , Traitement d'image par ordinateur/méthodes
5.
NMR Biomed ; 35(4): e4131, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-31482598

RÉSUMÉ

Dynamic MR image reconstruction from incomplete k-space data has generated great research interest due to its capability in reducing scan time. Nevertheless, the reconstruction problem is still challenging due to its ill-posed nature. Most existing methods either suffer from long iterative reconstruction time or explore limited prior knowledge. This paper proposes a dynamic MR imaging method with both k-space and spatial prior knowledge integrated via multi-supervised network training, dubbed as DIMENSION. Specifically, the DIMENSION architecture consists of a frequential prior network for updating the k-space with its network prediction and a spatial prior network for capturing image structures and details. Furthermore, a multi-supervised network training technique is developed to constrain the frequency domain information and the spatial domain information. The comparisons with classical k-t FOCUSS, k-t SLR, L+S and the state-of-the-art CNN-based method on in vivo datasets show our method can achieve improved reconstruction results in shorter time.


Sujet(s)
Traitement d'image par ordinateur , Imagerie par résonance magnétique , Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes
6.
Med Image Anal ; 73: 102190, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34340107

RÉSUMÉ

In dynamic magnetic resonance (MR) imaging, low-rank plus sparse (L+S) decomposition, or robust principal component analysis (PCA), has achieved stunning performance. However, the selection of the parameters of L+S is empirical, and the acceleration rate is limited, which are common failings of iterative compressed sensing MR imaging (CS-MRI) reconstruction methods. Many deep learning approaches have been proposed to address these issues, but few of them use a low-rank prior. In this paper, a model-based low-rank plus sparse network, dubbed L+S-Net, is proposed for dynamic MR reconstruction. In particular, we use an alternating linearized minimization method to solve the optimization problem with low-rank and sparse regularization. Learned soft singular value thresholding is introduced to ensure the clear separation of the L component and S component. Then, the iterative steps are unrolled into a network in which the regularization parameters are learnable. We prove that the proposed L+S-Net achieves global convergence under two standard assumptions. Experiments on retrospective and prospective cardiac cine datasets show that the proposed model outperforms state-of-the-art CS and existing deep learning methods and has great potential for extremely high acceleration factors (up to 24×).


Sujet(s)
Algorithmes , Imagerie par résonance magnétique , Coeur/imagerie diagnostique , Humains , Traitement d'image par ordinateur , Analyse en composantes principales , Études rétrospectives
7.
IEEE Trans Med Imaging ; 40(12): 3698-3710, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34252024

RÉSUMÉ

Deep learning methods have achieved attractive performance in dynamic MR cine imaging. However, most of these methods are driven only by the sparse prior of MR images, while the important low-rank (LR) prior of dynamic MR cine images is not explored, which may limit further improvements in dynamic MR reconstruction. In this paper, a learned singular value thresholding (Learned-SVT) operator is proposed to explore low-rank priors in dynamic MR imaging to obtain improved reconstruction results. In particular, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed as SLR-Net. SLR-Net is defined over a deep network flow graph, which is unrolled from the iterative procedures in the iterative shrinkage-thresholding algorithm (ISTA) for optimizing a sparse and LR-based dynamic MRI model. Experimental results on a single-coil scenario show that the proposed SLR-Net can further improve the state-of-the-art compressed sensing (CS) methods and sparsity-driven deep learning-based methods with strong robustness to different undersampling patterns, both qualitatively and quantitatively. Besides, SLR-Net has been extended to a multi-coil scenario, and achieved excellent reconstruction results compared with a sparsity-driven multi-coil deep learning-based method under a high acceleration. Prospective reconstruction results on an open real-time dataset further demonstrate the capability and flexibility of the proposed method on real-time scenarios.


Sujet(s)
Traitement d'image par ordinateur , Imagerie par résonance magnétique , Algorithmes , Études prospectives
8.
IEEE Trans Med Imaging ; 40(11): 3140-3153, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34252025

RÉSUMÉ

Magnetic resonance (MR) image reconstruction from undersampled k-space data can be formulated as a minimization problem involving data consistency and image prior. Existing deep learning (DL)-based methods for MR reconstruction employ deep networks to exploit the prior information and integrate the prior knowledge into the reconstruction under the explicit constraint of data consistency, without considering the real distribution of the noise. In this work, we propose a new DL-based approach termed Learned DC that implicitly learns the data consistency with deep networks, corresponding to the actual probability distribution of system noise. The data consistency term and the prior knowledge are both embedded in the weights of the networks, which provides an utterly implicit manner of learning reconstruction model. We evaluated the proposed approach with highly undersampled dynamic data, including the dynamic cardiac cine data with up to 24-fold acceleration and dynamic rectum data with the acceleration factor equal to the number of phases. Experimental results demonstrate the superior performance of the Learned DC both quantitatively and qualitatively than the state-of-the-art.


Sujet(s)
Traitement d'image par ordinateur , Imagerie par résonance magnétique , Algorithmes , Coeur/imagerie diagnostique , Probabilité
9.
Adv Sci (Weinh) ; 8(3): 2003097, 2021 Feb.
Article de Anglais | MEDLINE | ID: mdl-33552869

RÉSUMÉ

Optical-resolution photoacoustic microscopy (OR-PAM) is an excellent modality for in vivo biomedical imaging as it noninvasively provides high-resolution morphologic and functional information without the need for exogenous contrast agents. However, the high excitation laser dosage, limited imaging speed, and imperfect image quality still hinder the use of OR-PAM in clinical applications. The laser dosage, imaging speed, and image quality are mutually restrained by each other, and thus far, no methods have been proposed to resolve this challenge. Here, a deep learning method called the multitask residual dense network is proposed to overcome this challenge. This method utilizes an innovative strategy of integrating multisupervised learning, dual-channel sample collection, and a reasonable weight distribution. The proposed deep learning method is combined with an application-targeted modified OR-PAM system. Superior images under ultralow laser dosage (32-fold reduced dosage) are obtained for the first time in this study. Using this new technique, a high-quality, high-speed OR-PAM system that meets clinical requirements is now conceivable.

10.
Phys Med Biol ; 65(23): 235041, 2020 12 02.
Article de Anglais | MEDLINE | ID: mdl-33263316

RÉSUMÉ

Deep learning has achieved good success in cardiac magnetic resonance imaging (MRI) reconstruction, in which convolutional neural networks (CNNs) learn a mapping from the undersampled k-space to the fully sampled images. Although these deep learning methods can improve the reconstruction quality compared with iterative methods without requiring complex parameter selection or lengthy reconstruction time, the following issues still need to be addressed: 1) all these methods are based on big data and require a large amount of fully sampled MRI data, which is always difficult to obtain for cardiac MRI; 2) the effect of coil correlation on reconstruction in deep learning methods for dynamic MR imaging has never been studied. In this paper, we propose an unsupervised deep learning method for multi-coil cine MRI via a time-interleaved sampling strategy. Specifically, a time-interleaved acquisition scheme is utilized to build a set of fully encoded reference data by directly merging the k-space data of adjacent time frames. Then these fully encoded data can be used to train a parallel network for reconstructing images of each coil separately. Finally, the images from each coil are combined via a CNN to implicitly explore the correlations between coils. The comparisons with classic k-t FOCUSS, k-t SLR, L+S and KLR methods on in vivo datasets show that our method can achieve improved reconstruction results in an extremely short amount of time.


Sujet(s)
Apprentissage profond , Traitement d'image par ordinateur/méthodes , IRM dynamique/instrumentation , Apprentissage machine non supervisé , Coeur/imagerie diagnostique , Humains
11.
Magn Reson Imaging ; 68: 136-147, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-32045635

RÉSUMÉ

This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network. Different from most existing works which rely on the utilization of the coil sensitivities or prior information of predefined transforms, DeepcomplexMRI takes advantage of the availability of a large number of existing multi-channel groudtruth images and uses them as target data to train the deep residual convolutional neural network offline. In particular, a complex convolutional network is proposed to take into account the correlation between the real and imaginary parts of MR images. In addition, the k-space data consistency is further enforced repeatedly in between layers of the network. The evaluations on in vivo datasets show that the proposed method has the capability to recover the desired multi-channel images. Its comparison with state-of-the-art methods also demonstrates that the proposed method can reconstruct the desired MR images more accurately.


Sujet(s)
Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique , Algorithmes , Artéfacts , Encéphale/imagerie diagnostique , Bases de données factuelles , Apprentissage profond , Tests diagnostiques courants , Humains , Modèles théoriques , , Loi normale , Loi de Poisson , Reproductibilité des résultats
12.
IEEE Signal Process Mag ; 37(1): 141-151, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-33746470

RÉSUMÉ

Image reconstruction from undersampled k-space data has been playing an important role in fast MRI. Recently, deep learning has demonstrated tremendous success in various fields and has also shown potential in significantly accelerating MRI reconstruction with fewer measurements. This article provides an overview of the deep learning-based image reconstruction methods for MRI. Two types of deep learning-based approaches are reviewed: those based on unrolled algorithms and those which are not. The main structure of both approaches are explained, respectively. Several signal processing issues for maximizing the potential of deep reconstruction in fast MRI are discussed. The discussion may facilitate further development of the networks and the analysis of performance from a theoretical point of view.

13.
J Biophotonics ; 13(3): e201960147, 2020 03.
Article de Anglais | MEDLINE | ID: mdl-31845537

RÉSUMÉ

Deconvolution is the most commonly used image processing method in optical imaging systems to remove the blur caused by the point-spread function (PSF). While this method has been successful in deblurring, it suffers from several disadvantages, such as slow processing time due to multiple iterations required to deblur and suboptimal in cases where the experimental operator chosen to represent PSF is not optimal. In this paper, we present a deep-learning-based deblurring method that is fast and applicable to optical microscopic imaging systems. We tested the robustness of proposed deblurring method on the publicly available data, simulated data and experimental data (including 2D optical microscopic data and 3D photoacoustic microscopic data), which all showed much improved deblurred results compared to deconvolution. We compared our results against several existing deconvolution methods. Our results are better than conventional techniques and do not require multiple iterations or pre-determined experimental operator. Our method has several advantages including simple operation, short time to compute, good deblur results and wide application in all types of optical microscopic imaging systems. The deep learning approach opens up a new path for deblurring and can be applied in various biomedical imaging fields.


Sujet(s)
Algorithmes , Apprentissage profond , Traitement d'image par ordinateur
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE