Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Mol Cell Cardiol ; 195: 1-13, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39038734

RÉSUMÉ

Revascularization of ischemic myocardium following cardiac damage is an important step in cardiac regeneration. However, the mechanism of arteriogenesis has not been well described during cardiac regeneration. Here we investigated coronary artery remodeling and collateral growth during cardiac regeneration. Neonatal MI was induced by ligature of the left descending artery (LAD) in postnatal day (P) 1 or P7 pups from the Cx40-GFP mouse line and the arterial tree was reconstructed in 3D from images of cleared hearts collected at 1, 2, 4, 7 and 14 days after infarction. We show a rapid remodeling of the left coronary arterial tree induced by neonatal MI and the formation of numerous collateral arteries, which are transient in regenerating hearts after MI at P1 and persistent in non-regenerating hearts after MI at P7. This difference is accompanied by restoration of a perfused or a non-perfused LAD following MI at P1 or P7 respectively. Interestingly, collaterals ameliorate cardiac perfusion and drive LAD repair, and lineage tracing analysis demonstrates that the restoration of the LAD occurs by remodeling of pre-existing arterial cells independently of whether they originate in large arteries or arterioles. These results demonstrate that the restoration of the LAD artery during cardiac regeneration occurs by pruning as the rapidly forming collaterals that support perfusion of the disconnected lower LAD subsequently disappear on restoration of a unique LAD. These results highlight a rapid phase of arterial remodeling that plays an important role in vascular repair during cardiac regeneration.

2.
Development ; 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39082789

RÉSUMÉ

Skeletal muscles of the head and trunk originate in distinct lineages with divergent regulatory programs converging on activation of myogenic determination factors. Branchiomeric head and neck muscles share a common origin with cardiac progenitor cells in cardiopharyngeal mesoderm (CPM). The retinoic acid (RA) signalling pathway is required during a defined early time window for normal deployment of cells from posterior CPM to the heart. Here we show that blocking RA signalling in the early mouse embryo also results in selective loss of the trapezius neck muscle, without affecting other skeletal muscles. RA signalling is required for robust expression of myogenic determination factors in posterior CPM and subsequent expansion of the trapezius primordium. Lineage specific activation of a dominant negative RA receptor reveals that trapezius development is not regulated by direct RA signalling to myogenic progenitor cells in CPM, or through neural crest cells, but indirectly through the somitic lineage, closely apposed with posterior CPM in the early embryo. These findings suggest that trapezius development is dependent on precise spatiotemporal interactions between cranial and somitic mesoderm at the head/trunk interface.

3.
Adv Exp Med Biol ; 1441: 103-124, 2024.
Article de Anglais | MEDLINE | ID: mdl-38884707

RÉSUMÉ

The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.


Sujet(s)
Lignage cellulaire , Animaux , Humains , Différenciation cellulaire/génétique , Lignage cellulaire/génétique , Coeur/physiologie , Myocarde/cytologie , Myocarde/métabolisme , Myocytes cardiaques/métabolisme , Myocytes cardiaques/cytologie , Myocytes cardiaques/physiologie , Transduction du signal , Cellules souches/métabolisme , Cellules souches/cytologie , Cellules souches/physiologie
4.
Adv Exp Med Biol ; 1441: 77-85, 2024.
Article de Anglais | MEDLINE | ID: mdl-38884705

RÉSUMÉ

The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, and conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects (CHDs).


Sujet(s)
Modèles animaux de maladie humaine , Cardiopathies congénitales , Coeur , Animaux , Cardiopathies congénitales/physiopathologie , Cardiopathies congénitales/anatomopathologie , Coeur/embryologie , Coeur/physiopathologie , Coeur/croissance et développement , Humains , Souris , Morphogenèse
5.
Adv Exp Med Biol ; 1441: 645-659, 2024.
Article de Anglais | MEDLINE | ID: mdl-38884739

RÉSUMÉ

Tetralogy of Fallot and double-outlet right ventricle are outflow tract (OFT) alignment defects situated on a continuous disease spectrum. A myriad of upstream causes can impact on ventriculoarterial alignment that can be summarized as defects in either i) OFT elongation during looping morphogenesis or ii) OFT remodeling during cardiac septation. Embryological processes underlying these two developmental steps include deployment of second heart field cardiac progenitor cells, establishment and transmission of embryonic left/right information driving OFT rotation and OFT cushion and valve morphogenesis. The formation and remodeling of pulmonary trunk infundibular myocardium is a critical component of both steps. Defects in myocardial, endocardial, or neural crest cell lineages can result in alignment defects, reflecting the complex intercellular signaling events that coordinate arterial pole development. Importantly, however, OFT alignment is mechanistically distinct from neural crest-driven OFT septation, although neural crest cells impact indirectly on alignment through their role in modulating signaling during SHF development. As yet poorly understood nongenetic causes of alignment defects that impact the above processes include hemodynamic changes, maternal exposure to environmental teratogens, and stochastic events. The heterogeneity of causes converging on alignment defects characterizes the OFT as a hotspot of congenital heart defects.


Sujet(s)
Modèles animaux de maladie humaine , Ventricule droit à double issue , Transduction du signal , Tétralogie de Fallot , Tétralogie de Fallot/génétique , Tétralogie de Fallot/anatomopathologie , Tétralogie de Fallot/physiopathologie , Tétralogie de Fallot/embryologie , Animaux , Ventricule droit à double issue/génétique , Ventricule droit à double issue/anatomopathologie , Ventricule droit à double issue/physiopathologie , Humains , Crête neurale/métabolisme , Crête neurale/anatomopathologie , Crête neurale/embryologie , Morphogenèse/génétique
6.
C R Biol ; 347: 9-18, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38488639

RÉSUMÉ

Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.


Les malformations cardiaques congénitales touchent 1 naissance sur 100 et résultent d'anomalies du développement cardiaque. La croissance du tube cardiaque précoce se produit par l'ajout progressif de cellules progénitrices du second champ cardiaque (SHF) aux pôles cardiaques. Le SHF contribue au myocarde septal ventriculaire, au myocarde ventriculaire droit et au myocarde de la voie de sortie au pôle artériel, et au myocarde auriculaire, y compris le myocarde septal auriculaire, au pôle veineux. Le déploiement du SHF est essentiel pour la septation cardiaque et a été impliqué dans la formation du boucle cardiaque et, avec les cellules de la crête neurale, dans l'orchestration du développement de la voie efférente. Perturbation génétique ou environnementale du déploiement du SHF est donc à l'origine d'un spectre de formes communes de maladies cardiaques congénitales affectant la morphogenèse conotroncale et septale. Ici, nous passons en revue les principales propriétés des cellules du SHF ainsi que les découvertes récentes sur les programmes de développement qui contrôlent l'ajout de cellules progénitrices cardiaques ainsi que les origines des malformations cardiaques congénitales.


Sujet(s)
Cardiopathies congénitales , Coeur , Humains , Cardiopathies congénitales/génétique , Myocarde , Cellules souches , Morphogenèse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE