Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 245
Filtrer
1.
Genet Med ; : 101219, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39033379

RÉSUMÉ

BACKGROUND: SINO syndrome (Spastic paraplegia, Intellectual disability, Nystagmus and Obesity) is a rare autosomal dominant condition caused by heterozygous variants in KIDINS220. A total of 12 individuals are reported, comprising eight with SINO and four with an autosomal recessive condition attributed to bi-allelic KIDINS220 variants. METHODS: In our international cohort, we have comprised 14 individuals, carrying 13 novel pathogenic KIDINS220 variants in heterozygous form. We assessed clinical and molecular data of our cohort and previously reported individuals and based on functional experiments reached a better understanding of the pathogenesis behind KIDINS220-related disease. RESULTS: Using fetal tissue and in vitro assays, we demonstrate that the variants generate KIDINS220 truncated forms that mislocalize in punctate intracellular structures, with decreased levels of the full-length protein, suggesting a trans-dominant negative effect. 92% had their diagnosis within three years, with symptoms of developmental delay, spasticity, hypotonia, lack of eye contact and nystagmus. We identified a KIDINS220 variant associated with fetal hydrocephalus and show that 58% of examined individuals present brain ventricular dilatation. We extend the phenotypic spectrum of SINO syndrome to behavioral manifestations not previously highlighted. CONCLUSION: Our study provides further insights into the clinical spectrum, etiology and predicted functional impact of KIDINS220 variants.

2.
Genet Med ; : 101218, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39036895

RÉSUMÉ

PURPOSE: Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 (HGNC:9888) encodes a core member of the protein complex that methylates histone 3 lysine-4 (H3K4) and has not been implicated in human disease. METHODS: We identify five unrelated individuals with de novo heterozygous variants in RBBP5. Three nonsense/frameshift and two missense variants were identified in probands with neurodevelopmental symptoms including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models. RESULTS: Both missense p.(T232I) and p.(E296D) variants affect evolutionarily conserved amino acids located at the interface between RBBP5 and the nucleosome. In Drosophila, overexpression analysis identifies partial loss-of-function mechanisms when the variants are expressed using the fly Rbbp5 or human RBBP5 cDNA. Loss of Rbbp5 leads to a reduction in brain size. The human reference or variant transgenes fail to rescue this loss and expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both missense variants are partial loss-of-function alleles. CONCLUSION: Haploinsufficiency of RBBP5 observed through de novo null and hypomorphic loss-of-function variants is associated with a syndromic neurodevelopmental disorder.

3.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39013459

RÉSUMÉ

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Sujet(s)
Malformations multiples , Délétion de segment de chromosome , Chromosomes humains de la paire 9 , Malformations crâniofaciales , Méthylation de l'ADN , Protéines de liaison à l'ADN , Face , Hémopathies , Déficience intellectuelle , Troubles du développement neurologique , Maladies vestibulaires , Humains , Malformations multiples/génétique , Maladies vestibulaires/génétique , Déficience intellectuelle/génétique , Face/malformations , Face/anatomopathologie , Protéines de liaison à l'ADN/génétique , Mâle , Femelle , Hémopathies/génétique , Troubles du développement neurologique/génétique , Malformations crâniofaciales/génétique , Chromosomes humains de la paire 9/génétique , Enfant , Méthylation de l'ADN/génétique , Enfant d'âge préscolaire , Protéines tumorales/génétique , Adolescent , Hypertrichose/génétique , Mutation , Retard de croissance staturo-pondérale/génétique , Histone-lysine N-methyltransferase/génétique , Cardiopathies congénitales
4.
J Med Genet ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937076

RÉSUMÉ

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.

5.
Brain ; 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38848546

RÉSUMÉ

Intracellular trafficking involves an intricate machinery of motor complexes including the dynein complex to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains as well as cytoplasmic light and intermediate chains have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy-chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders, and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies, and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross-River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of NDD manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging, and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.

6.
Brain ; 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38833623

RÉSUMÉ

Congenital hydrocephalus (CH), characterized by cerebral ventriculomegaly, is one of the most common reasons for pediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate CH risk gene, however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome. Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated CH (totaling 2,697 parent-proband trios and 8,091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, CH, developmental delay, dysmorphic features, and other structural brain defects including corpus callosum dysgenesis and white matter hypoplasia. Eight unrelated patients were found to harbor arginine variants, including two recurrent missense DNVs, at homologous positions in RPXGV motifs of different NHL domains. Seven additional patients with rare, damaging, unphased or transmitted variants of uncertain significance were also identified. NHL-domain variants of TRIM71 exhibited impaired binding to the canonical TRIM71 target CDKN1A; other variants failed to direct the subcellular localization of TRIM71 to processing bodies. Single-cell transcriptomic analysis of human embryos revealed expression of TRIM71 in early first-trimester neural stem cells of the brain. These data show TRIM71 is essential for human brain morphogenesis and that TRIM71 mutations cause a novel neurodevelopmental syndrome featuring ventriculomegaly and CH.

7.
Eur J Hum Genet ; 2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38802530

RÉSUMÉ

Generation and subsequently accessibility of secondary findings (SF) in diagnostic practice is a subject of debate around the world and particularly in Europe. The French FIND study has been set up to assess patient/parent expectations regarding SF from exome sequencing (ES) and to collect their real-life experience until 1 year after the delivery of results. 340 patients who had ES for undiagnosed developmental disorders were included in this multicenter mixed study (quantitative N = 340; qualitative N = 26). Three groups of actionable SF were rendered: predisposition to late-onset actionable diseases; genetic counseling; pharmacogenomics. Participants expressed strong interest in obtaining SF and a high satisfaction level when a SF is reported. The medical actionability of the SF reinforced parents' sense of taking action for their child and was seen as an opportunity. While we observed no serious psychological concerns, we showed that these results could have psychological consequences, in particular for late-onset actionable diseases SF, within families already dealing with rare diseases. This study shows that participants remain in favor of accessing SF despite the potential psychological, care, and lifestyle impacts, which are difficult to anticipate. The establishment of a management protocol, including the support of a multidisciplinary team, would be necessary if national policy allows the reporting of these data.

8.
Brain ; 147(8): 2732-2744, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38753057

RÉSUMÉ

Deubiquitination is crucial for the proper functioning of numerous biological pathways, such as DNA repair, cell cycle progression, transcription, signal transduction and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders and congenital abnormalities. ATXN7L3 is a component of the DUB module of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex and two other related DUB modules, and it serves as an obligate adaptor protein of three ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and by using GeneMatcher, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia and distinctive facial characteristics, including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set, posteriorly rotated ears. To assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic neurodevelopmental disorder.


Sujet(s)
Incapacités de développement , Hypotonie musculaire , Humains , Hypotonie musculaire/génétique , Incapacités de développement/génétique , Femelle , Mâle , Enfant d'âge préscolaire , Enfant , Phénotype , Animaux , Adolescent , , Face/malformations , Nourrisson , Facteurs de transcription
9.
medRxiv ; 2024 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-38562733

RÉSUMÉ

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

10.
Genet Med ; 26(7): 101126, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38529886

RÉSUMÉ

PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.


Sujet(s)
Allèles , Holoprosencéphalie , Phénotype , Adolescent , Enfant , Enfant d'âge préscolaire , Femelle , Humains , Nourrisson , Mâle , Anodontie , Bec-de-lièvre/génétique , Bec-de-lièvre/anatomopathologie , Fente palatine/génétique , Fente palatine/anatomopathologie , Malformations crâniofaciales/génétique , Malformations crâniofaciales/anatomopathologie , Hétérozygote , Holoprosencéphalie/génétique , Holoprosencéphalie/anatomopathologie , Homozygote , Incisive/malformations , Protéines membranaires/génétique , Mutation faux-sens/génétique
11.
Am J Med Genet A ; 194(7): e63531, 2024 07.
Article de Anglais | MEDLINE | ID: mdl-38421086

RÉSUMÉ

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Sujet(s)
Duplication chromosomique , Chromosomes humains de la paire 3 , Variations de nombre de copies de segment d'ADN , Phénotype , Humains , Femelle , Mâle , Chromosomes humains de la paire 3/génétique , Duplication chromosomique/génétique , Enfant , Variations de nombre de copies de segment d'ADN/génétique , Enfant d'âge préscolaire , Troubles du développement neurologique/génétique , Troubles du développement neurologique/anatomopathologie , Adolescent , Études de cohortes , Déficience intellectuelle/génétique , Déficience intellectuelle/anatomopathologie , Adulte , Nourrisson
12.
J Clin Invest ; 134(4)2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38357931

RÉSUMÉ

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Sujet(s)
Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor , NAD , Femelle , Grossesse , Humains , Souris , Animaux , NAD/métabolisme , Nicotinamide , Phénotype , Métabolome , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/métabolisme
13.
Genet Med ; 26(5): 101087, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38288683

RÉSUMÉ

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Sujet(s)
Trouble du spectre autistique , Épilepsie , Déficience intellectuelle , Interneurones , Facteurs de transcription Sp , Facteurs de transcription , Adolescent , Enfant , Enfant d'âge préscolaire , Femelle , Humains , Mâle , Trouble du spectre autistique/génétique , Trouble du spectre autistique/anatomopathologie , Épilepsie/génétique , Épilepsie/anatomopathologie , Hétérozygote , Déficience intellectuelle/génétique , Déficience intellectuelle/anatomopathologie , Interneurones/métabolisme , Interneurones/anatomopathologie , Mutation faux-sens/génétique , Troubles du développement neurologique/génétique , Troubles du développement neurologique/anatomopathologie , Phénotype , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription Sp/génétique
14.
Prenat Diagn ; 44(1): 35-48, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38165124

RÉSUMÉ

OBJECTIVE: To describe the MR features enabling prenatal diagnosis of pontocerebellar hypoplasia (PCH). METHOD: This was a retrospective single monocentre study. The inclusion criteria were decreased cerebellar biometry on dedicated neurosonography and available fetal Magnetic Resonance Imaging (MRI) with PCH diagnosis later confirmed either genetically or clinically on post-natal MRI or by autopsy. The exclusion criteria were non-available MRI and sonographic features suggestive of a known genetic or other pathologic diagnosis. The collected data were biometric or morphological imaging parameters, clinical outcome, termination of pregnancy (TOP), pathological findings and genetic analysis (karyotyping, chromosomal microarray, DNA sequencing targeted or exome). PCH was classified as classic, non-classic, chromosomal, or unknown type. RESULTS: Forty-two fetuses were diagnosed with PCH, of which 27 were referred for decreased transverse cerebellar diameter at screening ultrasound. Neurosonography and fetal MRI were performed at a mean gestational age of 29 + 4 and 31 + 0 weeks, respectively. Termination of pregnancy occurred. Pregnancy was terminated in 24 cases. Neuropathological examination confirmed the diagnosis in 24 cases and genetic testing identified abnormalities in 29 cases (28 families, 14 chromosomal anomaly). Classic PCH is associated with pontine atrophy and small MR measurements decreasing with advancing gestation. CONCLUSION: This is the first large series of prenatally diagnosed PCHs. Our study shows the essential contribution of fetal MRI to the prenatal diagnosis of PCH. Classic PCHs are particularly severe and are associated with certain MR features.


Sujet(s)
Maladies du cervelet , Imagerie par résonance magnétique , Diagnostic prénatal , Grossesse , Femelle , Humains , Nourrisson , Études rétrospectives , Études de suivi , Diagnostic prénatal/méthodes , Imagerie par résonance magnétique/méthodes , Échographie prénatale/méthodes
15.
Mol Genet Genomic Med ; 12(1): e2363, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38284452

RÉSUMÉ

INTRODUCTION AND METHODS: We report two series of individuals with DDX3X variations, one (48 individuals) from physicians and one (44 individuals) from caregivers. RESULTS: These two series include several symptoms in common, with fairly similar distribution, which suggests that caregivers' data are close to physicians' data. For example, both series identified early childhood symptoms that were not previously described: feeding difficulties, mean walking age, and age at first words. DISCUSSION: Each of the two datasets provides complementary knowledge. We confirmed that symptoms are similar to those in the literature and provides more details on feeding difficulties. Caregivers considered that the symptom attention-deficit/hyperactivity disorder were most worrisome. Both series also reported sleep disturbance. Recently, anxiety has been reported in individuals with DDX3X variants. We strongly suggest that attention-deficit/hyperactivity disorder, anxiety, and sleep disorders need to be treated.


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité , Aidants , Enfant d'âge préscolaire , Humains , Trouble déficitaire de l'attention avec hyperactivité/génétique , Trouble déficitaire de l'attention avec hyperactivité/thérapie , DEAD-box RNA helicases , Autorapport , Nourrisson
16.
Brain ; 147(1): 311-324, 2024 01 04.
Article de Anglais | MEDLINE | ID: mdl-37713627

RÉSUMÉ

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Sujet(s)
Dystonie , Épilepsie , Déficience intellectuelle , Microcéphalie , Troubles du développement neurologique , Animaux , Humains , Microcéphalie/génétique , Déficience intellectuelle/génétique , Protéines du transport vésiculaire/génétique , Troubles du développement neurologique/génétique , Épilepsie/génétique
17.
Genet Med ; 26(1): 101007, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37860968

RÉSUMÉ

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Sujet(s)
Déficience intellectuelle , Troubles du développement neurologique , Humains , Lymphocytes T CD8+/métabolisme , Facteurs de transcription/génétique , Troubles du développement neurologique/génétique , Déficience intellectuelle/génétique , Méthylation de l'ADN/génétique , Protéines suppresseurs de tumeurs/génétique , Protéines de répression/génétique , Protéines de répression/métabolisme
18.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-37857482

RÉSUMÉ

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Sujet(s)
Déficience intellectuelle , Malformations du système nerveux , Nouveau-né , Femelle , Humains , Corps calleux , Agénésie du corps calleux/génétique , Malformations du système nerveux/génétique , Déficience intellectuelle/génétique , Cognition , Facteur de transcription Zeb1/génétique
19.
J Med Genet ; 61(2): 103-108, 2024 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-37879892

RÉSUMÉ

The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.


Sujet(s)
Trouble du spectre autistique , Déficience intellectuelle , Mâle , Humains , Femelle , Gènes homéotiques , Protéines à homéodomaine/génétique , Trouble du spectre autistique/génétique , Mutation/génétique , Facteurs de transcription/génétique , Déficience intellectuelle/génétique , Déficience intellectuelle/anatomopathologie , Phénotype , Agénésie du corps calleux/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE