Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Saudi J Biol Sci ; 31(8): 104048, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38988339

RÉSUMÉ

This paper outlines a methodical approach for isolating 6-gingerol (1a) from Zingiber officinale Roscoe rhizomes on a gram-scale, resulting in a product of high purity and significant yield. Further, 6-gingerol (1a) [SSG1] derivatives, including 1-(4-hydroxy-3-methoxyphenyl)decane-3,5-dione (1ab), were synthesized via a semi-synthetic pathway involving DMP-mediated fast oxidation and replication. Subsequently, a new series of 1,4-benzodiazepines (3a-c) was synthesized quantitatively using a basic technique. This synthesis necessitated the interaction of 1ab with various o-phenylenediamine (2a-c) compounds. Spectroscopic methods were employed to characterize the synthesized 1,4-benzodiazepines (3a-c)[SSG2, SSG3 & SSG4]. Despite extensive investments by pharmaceutical companies in traditional drug research and development for diseases like type 2 diabetes (T2D), successful treatments remain elusive. Medication repurposing has gained traction as a strategy to address not only diabetes but also other disorders. Leveraging existing molecular pharmacology data accelerates the development of new medications. This paper underscores the importance of repurposing traditional medicines to combat a range of communicable and non-communicable diseases, offering a promising avenue for therapeutic advancement. Additionally, molecular docking studies suggested that one derivative (SSG2) exhibited stronger binding affinity compared to the reference standards. Overall, the findings of this study highlight the potential of semi-synthetic gingerol derivatives for the development of novel therapeutic agents.

2.
Future Med Chem ; 15(19): 1743-1756, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37814818

RÉSUMÉ

Aim: In this study quercetin-iron complex (QFC) was synthesized, and the structural characterizations such as x-ray diffraction, field emission-scanning electron microscopy, energy-dispersive x-ray and Brunner-Emmitt-Teller adsorption-desorption isotherm analysis revealed the crystallinity state, surface morphology and nature of the adsorbing surface with surface area value. Methodology: Functional characterizations such as UV-visible spectrometric and Fourier transform infrared analysis collectively indicated the chemical changes that appeared after complex formation in terms of characteristic change in the spectrum and band position, respectively. Results: The in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus has shown a dose-dependent decrease in colony count and achieved significant removal at 15 mg/ml concentration of QFC. Conclusion: The molecular docking study supports the therapeutic application of QFC.


Sujet(s)
Nanoparticules métalliques , Quercétine , Quercétine/pharmacologie , Fer/composition chimique , Simulation de docking moléculaire , Antibactériens/composition chimique , Staphylococcus aureus , Nanoparticules métalliques/composition chimique , Tests de sensibilité microbienne
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE