Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Ecotoxicol Environ Saf ; 279: 116499, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38805828

RÉSUMÉ

There are various substances that can disrupt the homeostatic mechanisms of the body, defined as endocrine-disrupting chemicals (EDCs). The persistent nature of microplastics (MPs) is a cause for concern due to their ability to accumulate in food chains and widespread use, making their toxic effects particularly alarming. The potential of MPs for disrupting the endocrine system was observed in multiple tissues. Moreover, the adrenal gland is known to be extremely sensitive to EDCs, while with the effect of MPs on the adrenal gland has not previously been studied. This study aimed to highlight the potential polyethylene microplastics (PE-MPs) induced adreno-toxic effects rather than exploring the implicated mechanisms and concluding if melatonin (Mel) can afford protection against PE-MPs induced adreno-toxicity. To fulfill the goal, six groups of rats were used; control, Mel, PE-MPs (3.75 mg/kg), PE-MPs (15 mg/kg), PE-MPs (3.75 mg/kg) +Mel, and PE-MPs (15 mg/kg) +Mel. PE-MPs induced toxic changes in the adrenal cortex, which was evident by increased adrenal weight, histopathological examination, and ultrastructural changes detected by electron microscope. A reduction in serum cortisol and an increase in serum adrenocorticotropic hormone resulted from the adreno-toxic effects of PE-MPs. Mechanisms may include the reduction of steroidogenesis-related genes, as PE-MPs drastically reduce mRNA levels of StAR, Nr0b1, Cyp11A1, as well as Cyp11B1. Also, oxidative stress that results from PE-MPs is associated with higher rates of lipid peroxidation and decreased superoxide dismutase and glutathione. PE-MPs inflammatory effect was illustrated by elevated expression of IL-1ß and NF-kB, detected by immunohistochemical staining, in addition to increased expression of caspase-3 and mRNA of Bax, markers of proapoptotic activity. The impacts of PE-MPs were relatively dose-related, with the higher dose showing more significant toxicity than the lower one. Mel treatment was associated with a substantial amelioration of PE-MPs-induced toxic changes. Collectively, this study fills the knowledge gap about the MPs-induced adrenal cortex and elucidates various related toxic mechanisms. It also supports Mel's potential protective activity through antioxidant, anti-inflammatory, anti-apoptotic, and gene transcription regulatory effects.


Sujet(s)
Mélatonine , Microplastiques , Polyéthylène , Animaux , Mélatonine/pharmacologie , Mâle , Rats , Polyéthylène/toxicité , Microplastiques/toxicité , Stress oxydatif/effets des médicaments et des substances chimiques , Perturbateurs endocriniens/toxicité , Cortex surrénal/effets des médicaments et des substances chimiques , Cortex surrénal/anatomopathologie , Antioxydants/métabolisme , Antioxydants/pharmacologie , Rat Wistar
2.
Environ Sci Pollut Res Int ; 31(4): 5473-5483, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38114706

RÉSUMÉ

Ochratoxin A (OTA) is a well-known mycotoxin that adversely affects different human cells. Inhalational exposure to OTA and subsequent pulmonary diseases have been previously reported, yet its potential carcinogenicity and underlying molecular mechanisms have not been fully elucidated. This study aimed to evaluate the OTA-induced cytotoxicity and the epigenetic changes underlying its potential carcinogenicity in fetal lung fibroblast (WI-38) cells. OTA cytotoxicity was assessed by MTT assay; RT-qPCR was used to determine the expression of BAX, BCL-2, TP53, and miR-155, while ELISA was used for measuring 5-methyl cytosine percentage to assess global DNA methylation in OTA-treated versus control cells. WI-38 cells demonstrated sensitivity to OTA with IC50 at 22.38 µM. Though BAX and Bcl-2 were downregulated, with low BAX/BCL-2 ratio, and TP53 was upregulated, their fold changes showed decline trend with increasing OTA concentration. A significant dose-dependent miR-155 upregulation was observed, with dynamic time-related decline. Using subtoxic OTA concentrations, a significant global DNA hypermethylation with significant dose-dependent and dynamic alterations was identified. Global DNA hypermethylation and miR-155 upregulation are epigenetic mechanisms that mediate OTA toxicity on WI-38 cells. BAX downregulation, reduced BAX/BCL-2 ratio together with miR-155 upregulation indicated either the inhibition of TP53-dependent apoptosis or a tissue specific response to OTA exposure. The aforementioned OTA-induced variations present a new molecular evidence of OTA cytotoxicity and possible carcinogenicity in lung fibroblast cells.


Sujet(s)
Épigenèse génétique , microARN , Ochratoxines , Humains , Protéine Bax , ADN , Méthylation de l'ADN , Fibroblastes , Poumon , Ochratoxines/toxicité , Protéines proto-oncogènes c-bcl-2
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...