Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cancer Immunol Immunother ; 72(12): 4195-4207, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37848682

RÉSUMÉ

T cells expressing a mesothelin (MSLN)-specific T cell receptor fusion construct (TRuC®), called TC-210, have demonstrated robust antitumor activity in preclinical models of mesothelioma, ovarian cancer, and lung cancer. However, they are susceptible to suppression by the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis and lack intrinsic costimulatory signaling elements. To enhance the function of anti-MSLN TRuC-T cells, chimeric switch receptors (CSRs) have been designed to co-opt the immunosuppressive PD-1/PD-L1 axis and to deliver a CD28-mediated costimulatory signal. Here, we report that coexpression of the PD1-CD28 CSR in TRuC-T cells enhanced T cell receptor signaling, increased proinflammatory effector cytokines, decreased anti-inflammatory cytokines, and sustained effector function in the presence of PD-L1 when compared with TC-210. Anti-MSLN TRuC-T cells engineered to coexpress PD1-CD28 CSRs comprising the ectodomain of PD-1 and the intracellular domain of CD28 linked by the transmembrane domain of PD-1 were selected for integration into an anti-MSLN TRuC-T cell therapy product called TC-510. In vitro, TC-510 showed significant improvements in persistence and resistance to exhaustion upon chronic stimulation by tumor cells expressing MSLN and PD-L1 when compared with TC-210. In vivo, TC-510 showed a superior ability to provide durable protection following tumor rechallenge, versus TC-210. These data demonstrate that integration of a PD1-CD28 CSR into TRuC-T cells improves effector function, resistance to exhaustion, and prolongs persistence. Based on these findings, TC-510 is currently being evaluated in patients with MSLN-expressing solid tumors.


Sujet(s)
Antigène CD28 , Mésothéliome , Humains , Mésothéline , Récepteur-1 de mort cellulaire programmée/métabolisme , Antigène CD274/génétique , Antigène CD274/métabolisme , Lymphocytes T/métabolisme , Récepteurs aux antigènes des cellules T/métabolisme , Cytokines/métabolisme
2.
Cell ; 178(5): 1145-1158.e20, 2019 08 22.
Article de Anglais | MEDLINE | ID: mdl-31402173

RÉSUMÉ

While Mediator plays a key role in eukaryotic transcription, little is known about its mechanism of action. This study combines CRISPR-Cas9 genetic screens, degron assays, Hi-C, and cryoelectron microscopy (cryo-EM) to dissect the function and structure of mammalian Mediator (mMED). Deletion analyses in B, T, and embryonic stem cells (ESC) identified a core of essential subunits required for Pol II recruitment genome-wide. Conversely, loss of non-essential subunits mostly affects promoters linked to multiple enhancers. Contrary to current models, however, mMED and Pol II are dispensable to physically tether regulatory DNA, a topological activity requiring architectural proteins. Cryo-EM analysis revealed a conserved core, with non-essential subunits increasing structural complexity of the tail module, a primary transcription factor target. Changes in tail structure markedly increase Pol II and kinase module interactions. We propose that Mediator's structural pliability enables it to integrate and transmit regulatory signals and act as a functional, rather than an architectural bridge, between promoters and enhancers.


Sujet(s)
Complexe médiateur/métabolisme , RNA polymerase II/métabolisme , Animaux , Lymphocytes T CD4+/cytologie , Lymphocytes T CD4+/métabolisme , Systèmes CRISPR-Cas/génétique , Protéines du cycle cellulaire/métabolisme , Cellules cultivées , Protéines chromosomiques nonhistones/métabolisme , Cryomicroscopie électronique , Éléments activateurs (génétique) , Édition de gène , Humains , Mâle , Complexe médiateur/composition chimique , Complexe médiateur/génétique , Souris , Souris de lignée C57BL , Cellules souches embryonnaires de souris/cytologie , Cellules souches embryonnaires de souris/métabolisme , Régions promotrices (génétique) , Structure quaternaire des protéines , RNA polymerase II/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme ,
3.
PLoS One ; 10(8): e0135560, 2015.
Article de Anglais | MEDLINE | ID: mdl-26263384

RÉSUMÉ

Kaposi's sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi's sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3' untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis.


Sujet(s)
Cellules endothéliales/métabolisme , Herpèsvirus humain de type 8/génétique , microARN/génétique , Interférence par ARN , ARN viral , Tropomyosine/génétique , Régions 3' non traduites , Anoïkis/génétique , Lignée cellulaire , Cellules endothéliales/virologie , Régulation de l'expression des gènes , Ordre des gènes , Cellules endothéliales de la veine ombilicale humaine , Humains , Masse moléculaire , Isoformes de protéines , ARN messager/génétique , Tropomyosine/composition chimique , Tropomyosine/métabolisme
4.
PLoS Pathog ; 9(9): e1003584, 2013.
Article de Anglais | MEDLINE | ID: mdl-24039573

RÉSUMÉ

Kaposi's sarcoma (KS) is caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV). The virus expresses unique microRNAs (miRNAs), but the targets and functions of these miRNAs are not completely understood. In order to identify human targets of viral miRNAs, we measured protein expression changes caused by multiple KSHV miRNAs using pulsed stable labeling with amino acids in cell culture (pSILAC) in primary endothelial cells. This led to the identification of multiple human genes that are repressed at the protein level, but not at the miRNA level. Further analysis also identified that KSHV miRNAs can modulate activity or expression of upstream regulatory factors, resulting in suppressed activation of a protein involved in leukocyte recruitment (ICAM1) following lysophosphatidic acid treatment, as well as up-regulation of a pro-angiogenic protein (HIF1α), and up-regulation of a protein involved in stimulating angiogenesis (HMOX1). This study aids in our understanding of miRNA mechanisms of repression and miRNA contributions to viral pathogenesis.


Sujet(s)
Herpèsvirus humain de type 8/métabolisme , microARN/métabolisme , Néovascularisation pathologique/métabolisme , ARN tumoral/métabolisme , ARN viral/métabolisme , Sarcome de Kaposi/métabolisme , Échappement de la tumeur à la surveillance immunitaire , Cellules HEK293 , Herpèsvirus humain de type 8/génétique , Cellules endothéliales de la veine ombilicale humaine , Humains , microARN/génétique , Protéines tumorales/génétique , Protéines tumorales/métabolisme , Néovascularisation pathologique/génétique , Néovascularisation pathologique/anatomopathologie , Néovascularisation pathologique/virologie , ARN tumoral/génétique , ARN viral/génétique , Sarcome de Kaposi/génétique , Sarcome de Kaposi/anatomopathologie , Sarcome de Kaposi/virologie
5.
Viruses ; 4(9): 1687-710, 2012 09.
Article de Anglais | MEDLINE | ID: mdl-23170179

RÉSUMÉ

EBV and KSHV are both gamma-herpesviruses which express multiple viral microRNAs. Various methods have been used to investigate the functions of these microRNAs, largely through identification of microRNA target genes. Surprisingly, these related viruses do not share significant sequence homology in their microRNAs. A number of reports have described functions of EBV and KSHV microRNA targets, however only three experimentally validated target genes have been shown to be targeted by microRNAs from both viruses. More sensitive methods to identify microRNA targets have predicted approximately 60% of host targets could be shared by EBV and KSHV microRNAs, but by targeting different sequences in the host targets. In this review, we explore the similarities of microRNA functions and targets of these related viruses.


Sujet(s)
Herpèsvirus humain de type 4/pathogénicité , Herpèsvirus humain de type 8/pathogénicité , microARN/métabolisme , ARN viral/métabolisme , Facteurs de virulence/métabolisme , Régulation de l'expression des gènes , Herpèsvirus humain de type 4/génétique , Herpèsvirus humain de type 8/génétique , Humains , microARN/génétique , ARN viral/génétique , Facteurs de virulence/génétique
6.
J Virol ; 86(21): 11663-74, 2012 Nov.
Article de Anglais | MEDLINE | ID: mdl-22896623

RÉSUMÉ

Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the causative agent of KS, an important AIDS-associated malignancy. KSHV expresses at least 18 different mature microRNAs (miRNAs). We identified interleukin-1 receptor (IL-1R)-associated kinase 1 (IRAK1) as a potential target of miR-K12-9 (miR-K9) in an array data set examining changes in cellular gene expression levels in the presence of KSHV miRNAs. Using 3'-untranslated region (3'UTR) luciferase reporter assays, we confirmed that miR-K9 and other miRNAs inhibit IRAK1 expression. In addition, IRAK1 expression is downregulated in cells transfected with miR-K9 and during de novo KSHV infection. IRAK1 is an important component of the Toll-like receptor (TLR)/IL-1R signaling cascade. The downregulation of IRAK1 by miR-K9 resulted in the decreased stimulation of NF-κB activity in endothelial cells treated with IL-1α and in B cells treated with a TLR7/8 agonist. Interestingly, miR-K9 had a greater effect on NF-κB activity than did a small interfering RNA (siRNA) targeting IRAK1 despite the more efficient downregulation of IRAK1 expression with the siRNA. We hypothesized that KSHV miRNAs may also be regulating a second component of the TLR/IL-1R signaling cascade, resulting in a stronger phenotype. Reanalysis of the array data set identified myeloid differentiation primary response protein 88 (MYD88) as an additional potential target. 3'UTR luciferase reporter assays and Western blot analysis confirmed the targeting of MYD88 by miR-K5. The presence of miR-K9 and miR-K5 inhibited the production of IL-6 and IL-8 upon the IL-1α stimulation of endothelial cells. These results demonstrate KSHV-encoded miRNAs regulating the TLR/IL-1R signaling cascade at two distinct points and suggest the importance of these pathways during viral infection.


Sujet(s)
Cytokines/antagonistes et inhibiteurs , Herpèsvirus humain de type 8/immunologie , Herpèsvirus humain de type 8/pathogénicité , Interleukin-1 Receptor-Associated Kinases/antagonistes et inhibiteurs , microARN/métabolisme , Facteur de différenciation myéloïde-88/antagonistes et inhibiteurs , Transduction du signal , Fusion artificielle de gènes , Technique de Western , Lignée cellulaire , Analyse de profil d'expression de gènes , Extinction de l'expression des gènes , Gènes rapporteurs , Humains , Échappement immunitaire , Interleukin-1 Receptor-Associated Kinases/génétique , Interleukines/immunologie , Interleukines/métabolisme , Luciferases/analyse , Luciferases/génétique , microARN/génétique , Analyse sur microréseau , Facteur de différenciation myéloïde-88/génétique , Récepteurs de type Toll/immunologie , Récepteurs de type Toll/métabolisme
7.
Mol Biol Cell ; 15(10): 4356-68, 2004 Oct.
Article de Anglais | MEDLINE | ID: mdl-15269281

RÉSUMÉ

TATA-binding protein (TBP)-related factor 2 (TRF2) is one of four closely related RNA polymerase II transcription factors. We compared the intracellular localizations of TBP and TRF2 during the cell cycle and mitosis in HeLa cells. We show that during interphase, endogenous or exogenously expressed TRF2 is located almost exclusively in the nucleolus in HeLa or Cos cells. TRF2 localization is not affected by stress or mitotic stimuli, but TRF2 is rapidly released from the nucleolus upon inhibition of pol I transcription or treatment by RNase. These results suggest that localization of HeLa TRF2 requires a nucleolar-associated RNA species. In contrast, in 3T3 fibroblast cells, exogenously expressed TRF2 localizes to the nucleoplasm. Constitutive expression of ectopic TRF2 in 3T3 cells leads to a prolonged S phase of the cell cycle and reduced proliferation. Together with previous data, our results highlight the cell-specific localization and functions of TRF2. Furthermore, we show that during cell division, HeLa TRF2 and TBP are localized in the mitotic cytoplasm and TRF2 relocalizes into the nascent nucleoli immediately after mitosis, whereas TBP reassociates with the chromatin. Although partially contradictory results have been reported, our data are consistent with a model where only small proportion of the cellular TBP remains associated with specific promoter loci during mitosis.


Sujet(s)
Cycle cellulaire/physiologie , Nucléole/métabolisme , Protéines nucléaires/métabolisme , Protéines apparentées à la protéine de liaison à la boite TATA/métabolisme , Cellules 3T3 , Animaux , Cellules COS , Chlorocebus aethiops , DNA polymerase I/métabolisme , Cellules HeLa , Humains , Immunohistochimie , Souris , Protéine de liaison à la boite TATA/métabolisme , Protéine-2 de liaison aux répétitions télomériques , Transcription génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...