Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 176
Filtrer
1.
Mol Psychiatry ; 2024 May 04.
Article de Anglais | MEDLINE | ID: mdl-38704508

RÉSUMÉ

Sensory abnormalities are observed in ~90% of individuals with autism spectrum disorders (ASD), but the underlying mechanisms are poorly understood. GluN2B, an NMDA receptor subunit that regulates long-term depression and circuit refinement during brain development, has been strongly implicated in ASD, but whether GRIN2B mutations lead to sensory abnormalities remains unclear. Here, we report that Grin2b-mutant mice show behavioral sensory hypersensitivity and brain hyperconnectivity associated with the anterior cingulate cortex (ACC). Grin2b-mutant mice with a patient-derived C456Y mutation (Grin2bC456Y/+) show sensory hypersensitivity to mechanical, thermal, and electrical stimuli through supraspinal mechanisms. c-fos and functional magnetic resonance imaging indicate that the ACC is hyperactive and hyperconnected with other brain regions under baseline and stimulation conditions. ACC pyramidal neurons show increased excitatory synaptic transmission. Chemogenetic inhibition of ACC pyramidal neurons normalizes ACC hyperconnectivity and sensory hypersensitivity. These results suggest that GluN2B critically regulates ASD-related cortical connectivity and sensory brain functions.

2.
Psychiatry Clin Neurosci ; 78(7): 405-415, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38751214

RÉSUMÉ

AIM: Short tandem repeats (STRs) are repetitive DNA sequences and highly mutable in various human disorders. While the involvement of STRs in various genetic disorders has been extensively studied, their role in autism spectrum disorder (ASD) remains largely unexplored. In this study, we aimed to investigate genetic association of STR expansions with ASD using whole genome sequencing (WGS) and identify risk loci associated with ASD phenotypes. METHODS: We analyzed WGS data of 634 ASD families and performed genome-wide evaluation for 12,929 STR loci. We found rare STR expansions that exceeded normal repeat lengths in autism cases compared to unaffected controls. By integrating single cell RNA and ATAC sequencing datasets of human postmortem brains, we prioritized STR loci in genes specifically expressed in cortical development stages. A deep learning method was used to predict functionality of ASD-associated STR loci. RESULTS: In ASD cases, rare STR expansions predominantly occurred in early cortical layer-specific genes involved in neurodevelopment, highlighting the cellular specificity of STR-associated genes in ASD risk. Leveraging deep learning prediction models, we demonstrated that these STR expansions disrupted the regulatory activity of enhancers and promoters, suggesting a potential mechanism through which they contribute to ASD pathogenesis. We found that individuals with ASD-associated STR expansions exhibited more severe ASD phenotypes and diminished adaptability compared to non-carriers. CONCLUSION: Short tandem repeat expansions in cortical layer-specific genes are associated with ASD and could potentially be a risk genetic factor for ASD. Our study is the first to show evidence of STR expansion associated with ASD in an under-investigated population.


Sujet(s)
Trouble du spectre autistique , Répétitions microsatellites , Humains , Trouble du spectre autistique/génétique , Répétitions microsatellites/génétique , Mâle , Femelle , Cortex cérébral/anatomopathologie , Phénotype , Enfant , Séquençage du génome entier , Apprentissage profond , Indice de gravité de la maladie , Adulte , Expansion de séquence répétée de l'ADN/génétique
3.
PLoS Biol ; 22(5): e3002596, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38718086

RÉSUMÉ

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Sujet(s)
Trouble du spectre autistique , Cils vibratiles , Épendyme , Souris knockout , Phénotype , Animaux , Mâle , Souris , Trouble du spectre autistique/génétique , Trouble du spectre autistique/métabolisme , Trouble du spectre autistique/physiopathologie , Comportement animal , Cils vibratiles/métabolisme , Modèles animaux de maladie humaine , Épendyme/métabolisme , Hippocampe/métabolisme , Hydrocéphalie/génétique , Hydrocéphalie/métabolisme , Hydrocéphalie/anatomopathologie , Hydrocéphalie/physiopathologie , Katanine/métabolisme , Katanine/génétique , Souris de lignée C57BL , Neurones/métabolisme , Synapses/métabolisme , Transcriptome/génétique
4.
Curr Opin Neurobiol ; 86: 102873, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38564830
5.
Nat Methods ; 21(2): 353-360, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38191933

RÉSUMÉ

The structural plasticity of synapses is crucial for regulating brain functions. However, currently available methods for studying synapse organization based on split fluorescent proteins (FPs) have been limited in assessing synaptic dynamics in vivo due to the irreversible binding of split FPs. Here, we develop 'SynapShot', a method for visualizing the structural dynamics of intact synapses by combining dimerization-dependent FPs (ddFPs) with engineered synaptic adhesion molecules. SynapShot allows real-time monitoring of reversible and bidirectional changes of synaptic contacts under physiological stimulation. The application of green and red ddFPs in SynapShot enables simultaneous visualization of two distinct populations of synapses. Notably, the red-shifted SynapShot is highly compatible with blue light-based optogenetic techniques, allowing for visualization of synaptic dynamics while precisely controlling specific signaling pathways. Furthermore, we demonstrate that SynapShot enables real-time monitoring of structural changes in synaptic contacts in the mouse brain during both primitive and higher-order behaviors.


Sujet(s)
Neurones , Synapses , Animaux , Souris , Synapses/physiologie , Neurones/physiologie , Transduction du signal , Cellules cultivées , Agents colorants , Plasticité neuronale
6.
Neuron ; 111(21): 3378-3396.e9, 2023 11 01.
Article de Anglais | MEDLINE | ID: mdl-37657442

RÉSUMÉ

A genetically valid animal model could transform our understanding of schizophrenia (SCZ) disease mechanisms. Rare heterozygous loss-of-function (LoF) mutations in GRIN2A, encoding a subunit of the NMDA receptor, greatly increase the risk of SCZ. By transcriptomic, proteomic, and behavioral analyses, we report that heterozygous Grin2a mutant mice show (1) large-scale gene expression changes across multiple brain regions and in neuronal (excitatory and inhibitory) and non-neuronal cells (astrocytes and oligodendrocytes), (2) evidence of hypoactivity in the prefrontal cortex (PFC) and hyperactivity in the hippocampus and striatum, (3) an elevated dopamine signaling in the striatum and hypersensitivity to amphetamine-induced hyperlocomotion (AIH), (4) altered cholesterol biosynthesis in astrocytes, (5) a reduction in glutamatergic receptor signaling proteins in the synapse, and (6) an aberrant locomotor pattern opposite of that induced by antipsychotic drugs. These findings reveal potential pathophysiologic mechanisms, provide support for both the "hypo-glutamate" and "hyper-dopamine" hypotheses of SCZ, and underscore the utility of Grin2a-deficient mice as a genetic model of SCZ.


Sujet(s)
Dopamine , Protéomique , Récepteurs du N-méthyl-D-aspartate , Animaux , Souris , Encéphale/métabolisme , Dopamine/métabolisme , Névroglie/métabolisme , Neurones/métabolisme , Cortex préfrontal/métabolisme , Modèles animaux de maladie humaine , Récepteurs du N-méthyl-D-aspartate/génétique
7.
Mol Psychiatry ; 28(11): 4642-4654, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37730842

RÉSUMÉ

Dopamine (DA) neurons in the ventral tegmental area (VTA) promote social brain functions by releasing DA onto nucleus accumbens neurons, but it remains unclear how VTA neurons communicate with cortical neurons. Here, we report that the medial prefrontal cortex (mPFC)-lateral hypothalamus (LH)-VTA pathway contributes to social deficits in mice with IRSp53 deletion restricted to cortical excitatory neurons (Emx1-Cre;Irsp53fl/fl mice). LH-projecting mutant mPFC neurons display abnormally increased excitability involving decreased potassium channel gene expression, leading to excessive excitatory synaptic input to LH-GABA neurons. A circuit-specific IRSp53 deletion in LH-projecting mPFC neurons also increases neuronal excitability and induces social deficits. LH-GABA neurons with excessive mPFC excitatory synaptic input show a compensatory decrease in excitability, weakening the inhibitory LHGABA-VTAGABA pathway and subsequently over-activating VTA-GABA neurons and over-inhibiting VTA-DA neurons. Accordingly, optogenetic activation of the LHGABA-VTAGABA pathway improves social deficits in Emx1-Cre;Irsp53fl/fl mice. Therefore, the mPFC-LHGABA-VTAGABA-VTADA pathway contributes to the social deficits in Emx1-Cre;Irsp53fl/fl mice.


Sujet(s)
Aire hypothalamique latérale , Aire tegmentale ventrale , Animaux , Souris , Dopamine/métabolisme , Neurones dopaminergiques/métabolisme , Acide gamma-amino-butyrique/métabolisme , Aire hypothalamique latérale/métabolisme , Noyau accumbens/métabolisme , Aire tegmentale ventrale/métabolisme
8.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Article de Anglais | MEDLINE | ID: mdl-37527657

RÉSUMÉ

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Sujet(s)
Astrocytes , Phagocytose , Stress psychologique , Animaux , Enfant , Humains , Souris , Astrocytes/métabolisme , c-Mer Tyrosine kinase/génétique , Hormones/métabolisme , Synapses/métabolisme , Stress psychologique/métabolisme
10.
Nat Commun ; 14(1): 3547, 2023 06 15.
Article de Anglais | MEDLINE | ID: mdl-37321992

RÉSUMÉ

Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.


Sujet(s)
Épilepsie , Canaux potassiques KNCQ , Animaux , Souris , Épilepsie/métabolisme , Canaux potassiques KNCQ/génétique , Canal potassique KCNQ2/génétique , Canal potassique KCNQ2/métabolisme , Canal potassique KCNQ3/métabolisme , Neurones/métabolisme , Crises épileptiques/génétique , Crises épileptiques/métabolisme
11.
Mol Psychiatry ; 28(8): 3548-3562, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37365244

RÉSUMÉ

ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.


Sujet(s)
Trouble autistique , Déficience intellectuelle , Souris , Animaux , Protéines de tissu nerveux/métabolisme , Plasticité neuronale/génétique , Potentialisation à long terme/génétique , Trouble autistique/métabolisme , Cognition , Protéines à homéodomaine/métabolisme
12.
Front Mol Neurosci ; 16: 1111388, 2023.
Article de Anglais | MEDLINE | ID: mdl-36873104

RÉSUMÉ

Chd8+/N2373K mice with a human C-terminal-truncating mutation (N2373K) display autistic-like behaviors in juvenile and adult males but not in females. In contrast, Chd8+/S62X mice with a human N-terminal-truncating mutation (S62X) display behavioral deficits in juvenile males (not females) and adult males and females, indicative of age-differential sexually dimorphic behaviors. Excitatory synaptic transmission is suppressed and enhanced in male and female Chd8+/S62X juveniles, respectively, but similarly enhanced in adult male and female mutants. ASD-like transcriptomic changes are stronger in newborn and juvenile (but not adult) Chd8+/S62X males but in newborn and adult (not juvenile) Chd8+/S62X females. These results point to age-differential sexual dimorphisms in Chd8+/S62X mice at synaptic and transcriptomic levels, in addition to the behavioral level.

13.
J Neurosci ; 43(9): 1555-1571, 2023 03 01.
Article de Anglais | MEDLINE | ID: mdl-36717231

RÉSUMÉ

The adolescent social experience is essential for the maturation of the prefrontal cortex in mammalian species. However, it still needs to be determined which cortical circuits mature with such experience and how it shapes adult social behaviors in a sex-specific manner. Here, we examined social-approaching behaviors in male and female mice after postweaning social isolation (PWSI), which deprives social experience during adolescence. We found that the PWSI, particularly isolation during late adolescence, caused an abnormal increase in social approaches (hypersociability) only in female mice. We further found that the PWSI female mice showed reduced parvalbumin (PV) expression in the left orbitofrontal cortex (OFCL). When we measured neural activity in the female OFCL, a substantial number of neurons showed higher activity when mice sniffed other mice (social sniffing) than when they sniffed an object (object sniffing). Interestingly, the PWSI significantly reduced both the number of activated neurons and the activity level during social sniffing in female mice. Similarly, the CRISPR/Cas9-mediated knockdown of PV in the OFCL during late adolescence enhanced sociability and reduced the social sniffing-induced activity in adult female mice via decreased excitability of PV+ neurons and reduced synaptic inhibition in the OFCL Moreover, optogenetic activation of excitatory neurons or optogenetic inhibition of PV+ neurons in the OFCL enhanced sociability in female mice. Our data demonstrate that the adolescent social experience is critical for the maturation of PV+ inhibitory circuits in the OFCL; this maturation shapes female social behavior via enhancing social representation in the OFCL SIGNIFICANCE STATEMENT Adolescent social isolation often changes adult social behaviors in mammals. Yet, we do not fully understand the sex-specific effects of social isolation and the brain areas and circuits that mediate such changes. Here, we found that adolescent social isolation causes three abnormal phenotypes in female but not male mice: hypersociability, decreased PV+ neurons in the left orbitofrontal cortex (OFCL), and decreased socially evoked activity in the OFCL Moreover, parvalbumin (PV) deletion in the OFCL in vivo caused the same phenotypes in female mice by increasing excitation compared with inhibition within the OFCL Our data suggest that adolescent social experience is required for PV maturation in the OFCL, which is critical for evoking OFCL activity that shapes social behaviors in female mice.


Sujet(s)
Neurones , Parvalbumines , Mâle , Souris , Animaux , Femelle , Parvalbumines/métabolisme , Neurones/physiologie , Cortex préfrontal/physiologie , Comportement social , Isolement social , Interneurones/physiologie , Mammifères
14.
Ann Neurol ; 93(1): 155-163, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36251395

RÉSUMÉ

Here, we report the generation and comprehensive characterization of a knockin mouse model for the hotspot p.Arg87Cys variant of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) gene, which was recently identified in individuals diagnosed with West syndrome, a developmental and epileptic encephalopathy. The Cyfip2+/R87C mice recapitulated many neurological and neurobehavioral phenotypes of the patients, including spasmlike movements, microcephaly, and impaired social communication. Age-progressive cytoarchitectural disorganization and gliosis were also identified in the hippocampus of Cyfip2+/R87C mice. Beyond identifying a decrease in CYFIP2 protein levels in the Cyfip2+/R87C brains, we demonstrated that the p.Arg87Cys variant enhances ubiquitination and proteasomal degradation of CYFIP2. ANN NEUROL 2023;93:155-163.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Spasmes infantiles , Animaux , Souris , Protéines adaptatrices de la transduction du signal/génétique , Spasmes infantiles/génétique , Hippocampe/métabolisme , Encéphale/métabolisme , Protéine du syndrome X fragile
15.
Mol Psychiatry ; 28(3): 1351-1364, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36434054

RÉSUMÉ

Spatial learning and memory flexibility are known to require long-term potentiation (LTP) and long-term depression (LTD), respectively, on a cellular basis. We previously showed that cyclin Y (CCNY), a synapse-remodeling cyclin, is a novel actin-binding protein and an inhibitory regulator of functional and structural LTP in vitro. In this study, we report that Ccny knockout (KO) mice exhibit enhanced LTP and weak LTD at Schaffer collateral-CA1 synapses in the hippocampus. In accordance with enhanced LTP, Ccny KO mice showed improved spatial learning and memory. However, although previous studies reported that normal LTD is necessary for memory flexibility, Ccny KO mice intriguingly showed improved memory flexibility, suggesting that weak LTD could exert memory flexibility when combined with enhanced LTP. At the molecular level, CCNY modulated spatial learning and memory flexibility by distinctively affecting the cofilin-actin signaling pathway in the hippocampus. Specifically, CCNY inhibited cofilin activation by original learning, but reversed such inhibition by reversal learning. Furthermore, viral-mediated overexpression of a phosphomimetic cofilin-S3E in hippocampal CA1 regions enhanced LTP, weakened LTD, and improved spatial learning and memory flexibility, thus mirroring the phenotype of Ccny KO mice. In contrast, the overexpression of a non-phosphorylatable cofilin-S3A in hippocampal CA1 regions of Ccny KO mice reversed the synaptic plasticity, spatial learning, and memory flexibility phenotypes observed in Ccny KO mice. Altogether, our findings demonstrate that LTP and LTD cooperatively regulate memory flexibility. Moreover, CCNY suppresses LTP while facilitating LTD in the hippocampus and negatively regulates spatial learning and memory flexibility through the control of cofilin-actin signaling, proposing CCNY as a learning regulator modulating both memorizing and forgetting processes.


Sujet(s)
Actines , Apprentissage spatial , Souris , Animaux , Hippocampe/métabolisme , Potentialisation à long terme/physiologie , Plasticité neuronale/physiologie , Synapses/métabolisme , Souris knockout , Cyclines/génétique , Cyclines/métabolisme , Facteurs de dépolymérisation de l'actine/métabolisme
16.
Front Psychiatry ; 14: 1341348, 2023.
Article de Anglais | MEDLINE | ID: mdl-38516548

RÉSUMÉ

ARID1B, a chromatin remodeler, is strongly implicated in autism spectrum disorders (ASD). Two previous studies on Arid1b-mutant mice with the same exon 5 deletion in different genetic backgrounds revealed distinct synaptic phenotypes underlying the behavioral abnormalities: The first paper reported decreased inhibitory synaptic transmission in layer 5 pyramidal neurons in the medial prefrontal cortex (mPFC) region of the heterozygous Arid1b-mutant (Arid1b+/-) brain without changes in excitatory synaptic transmission. In the second paper, in contrast, we did not observe any inhibitory synaptic change in layer 5 mPFC pyramidal neurons, but instead saw decreased excitatory synaptic transmission in layer 2/3 mPFC pyramidal neurons without any inhibitory synaptic change. In the present report, we show that when we changed the genetic background of Arid1b+/- mice from C57BL/6 N to C57BL/6 J, to mimic the mutant mice of the first paper, we observed both the decreased inhibitory synaptic transmission in layer 5 mPFC pyramidal neurons reported in the first paper, and the decreased excitatory synaptic transmission in mPFC layer 2/3 pyramidal neurons reported in the second paper. These results suggest that genetic background can be a key determinant of the inhibitory synaptic phenotype in Arid1b-mutant mice while having minimal effects on the excitatory synaptic phenotype.

18.
Front Mol Neurosci ; 15: 1022306, 2022.
Article de Anglais | MEDLINE | ID: mdl-36385756

RÉSUMÉ

Autism spectrum disorders (ASD) are ~4-times more common in males than females, and CHD8 (a chromatin remodeler)-related ASD shows a strong male bias (~4:1), although the underlying mechanism remains unclear. Chd8-mutant mice with a C-terminal protein-truncating mutation (N2373K) display male-preponderant behavioral deficits as juveniles and adults, although whether this also applies to other Chd8 mutations remains unknown. In addition, it remains unclear whether sexually dimorphic phenotypes in Chd8-mutant mice are differentially observed in males and females across different ages. We here generated new Chd8-mutant (knock-in) mice carrying a patient-derived mutation causing an N-terminal and stronger protein truncation (Chd8+/S62X mice) and characterized the mice by behavioral analyses. Juvenile Chd8+/S62X mice displayed male-preponderant autistic-like behaviors; hypoactivity and enhanced mother-seeking/attachment behavior in males but not in females. Adult male and female Chd8+/S62X mice showed largely similar deficits in repetitive and anxiety-like behavioral domains. Therefore, the CHD8-S62X mutation induces ASD-like behaviors in juvenile male mice and adult male and female mice, pointing to an age-differential sexual dimorphism and also distinct sexual dimorphisms in different Chd8 mutations (N2373K and S62X).

19.
Elife ; 112022 11 01.
Article de Anglais | MEDLINE | ID: mdl-36317872

RÉSUMÉ

Social deficit is a major feature of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder, but its neural mechanisms remain unclear. Here, we examined neuronal discharge characteristics in the medial prefrontal cortex (mPFC) of IRSp53/Baiap2-mutant mice, which show social deficits, during social approach. We found a decrease in the proportion of IRSp53-mutant excitatory mPFC neurons encoding social information, but not that encoding non-social information. In addition, the firing activity of IRSp53-mutant neurons was less differential between social and non-social targets. IRSp53-mutant excitatory mPFC neurons displayed an increase in baseline neuronal firing, but decreases in the variability and dynamic range of firing as well as burst firing during social and non-social target approaches compared to wild-type controls. Treatment of memantine, an NMDA receptor antagonist that rescues social deficit in IRSp53-mutant mice, alleviates the reduced burst firing of IRSp53-mutant pyramidal mPFC neurons. These results suggest that suppressed neuronal activity dynamics and burst firing may underlie impaired cortical encoding of social information and social behaviors in IRSp53-mutant mice.


Sujet(s)
Neurones , Schizophrénie , Animaux , Souris , Neurones/physiologie , Cellules pyramidales/métabolisme , Cortex préfrontal/physiologie , Récepteurs du N-méthyl-D-aspartate/génétique , Récepteurs du N-méthyl-D-aspartate/métabolisme
20.
Mol Autism ; 13(1): 40, 2022 10 03.
Article de Anglais | MEDLINE | ID: mdl-36192805

RÉSUMÉ

BACKGROUND: A core symptom of autism spectrum disorder (ASD) is repetitive and restrictive patterns of behavior. Cognitive inflexibility has been proposed as a potential basis for these symptoms of ASD. More generally, behavioral inflexibility has been proposed to underlie repetitive and restrictive behavior in ASD. Here, we investigated whether and how behavioral flexibility is compromised in a widely used animal model of ASD. METHODS: We compared the behavioral performance of Shank2-knockout mice and wild-type littermates in reversal learning employing a probabilistic classical trace conditioning paradigm. A conditioned stimulus (odor) was paired with an unconditioned appetitive (water, 6 µl) or aversive (air puff) stimulus in a probabilistic manner. We also compared air puff-induced eye closure responses of Shank2-knockout and wild-type mice. RESULTS: Male, but not female, Shank2-knockout mice showed impaired reversal learning when the expected outcomes consisted of a water reward and a strong air puff. Moreover, male, but not female, Shank2-knockout mice showed stronger anticipatory eye closure responses to the air puff compared to wild-type littermates, raising the possibility that the impairment might reflect enhanced fear. In support of this contention, male Shank2-knockout mice showed intact reversal learning when the strong air puff was replaced with a mild air puff and when the expected outcomes consisted of only rewards. LIMITATIONS: We examined behavioral flexibility in one behavioral task (reversal learning in a probabilistic classical trace conditioning paradigm) using one ASD mouse model (Shank2-knockout mice). Thus, future work is needed to clarify the extent to which our findings (that enhanced fear limits behavioral flexibility in ASD) can explain the behavioral inflexibility associated with ASD. Also, we examined only the relationship between fear and behavioral flexibility, leaving open the question of whether abnormalities in processes other than fear contribute to behavioral inflexibility in ASD. Finally, the neurobiological mechanisms linking Shank2-knockout and enhanced fear remain to be elucidated. CONCLUSIONS: Our results indicate that enhanced fear suppresses reversal learning in the presence of an intact capability to learn cue-outcome contingency changes in Shank2-knockout mice. Our findings suggest that behavioral flexibility might be seriously limited by abnormal emotional responses in ASD.


Sujet(s)
Trouble du spectre autistique , Animaux , Trouble du spectre autistique/génétique , Trouble du spectre autistique/psychologie , Conditionnement classique , Modèles animaux de maladie humaine , Peur , Mâle , Souris , Souris knockout , Protéines de tissu nerveux/génétique , Eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE