Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Biosens Bioelectron ; 157: 112167, 2020 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-32250937

RÉSUMÉ

Graphene-based transistors are promising devices in the evaluation of carrier density in biological analytes. We report on the design and fabrication of a graphene-based field-effect transistor for monitoring and assessing the interaction between the coagulation factors based on the charge carrier density in a blood sample. When biochemical reactions occurred during the coagulation cascade process, a dopant effect was noticed on the graphene surface by the change in Dirac point voltage values. Additional experiments were performed using blood samples treated with activators (vitamin K, calcium chloride, and thromboplastin reagent) and inhibitors (heparin drugs) to evaluate the selectivity of the graphene field-effect transistor devices. Since the transfer characteristic curves presented divergent behaviours for different levels of procoagulants and anticoagulants, the measurements showed that the devices can assess changes in the concentrations of factors that inhibit or accelerate the cascade process when using untreated and treated samples. Reproducibility was verified by testing samples from different sources. To the best of our knowledge, this study is the first to demonstrate the potential of graphene in monitoring the hemostasis process through the analysis of the electrical properties of human whole blood.


Sujet(s)
Techniques de biocapteur/instrumentation , Coagulation sanguine , Graphite/composition chimique , Transistors électroniques , Anticoagulants/pharmacologie , Coagulation sanguine/effets des médicaments et des substances chimiques , Tests de coagulation sanguine/instrumentation , Coagulants/pharmacologie , Conception d'appareillage , Hémostase/effets des médicaments et des substances chimiques , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE