Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Mol Divers ; 2024 Jan 28.
Article de Anglais | MEDLINE | ID: mdl-38280974

RÉSUMÉ

The behavior of a molecule within its environment is governed by chemical fields present in 3D space. However, beyond local descriptors in 3D, the conformations a molecule assumes, and the resulting clusters also play a role in influencing structure-activity models. This study focuses on the clustering of atoms according to the vector space of four atoms aligned in the Z-Matrix Reference system for molecular similarity. Using 3D-QSAR analysis, it was aimed to determine the pharmacophore groups as interaction points in the binding region of the ß2-adrenoceptor target of fenoterol stereoisomers. Different types of local reactive descriptors of ligands have been used to elucidate points of interaction with the target. Activity values for ligand-receptor interaction energy were determined using the Levenberg-Marquardt algorithm. Using the Molecular Comparative Electron Topology method, the 3D pharmacophore model (3D-PhaM) was obtained after aligning and superimposing the molecules and was further validated by the molecular docking method. Best guesses were calculated with a non-output validation (LOO-CV) method. Finally, the data were calculated using the 'graphic fingerprint' technique. Based on the eLKlopman (Electrostatic LUMO Klopman) descriptor, the Q2 value of this derivative set was calculated as 0.981 and the R2ext value is calculated as 0.998.

2.
J Mol Model ; 25(8): 247, 2019 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-31342175

RÉSUMÉ

We used a new descriptor called the Klopman index in our software of the "molecular comparative electron topology" (MCET) method to reduce the uncertainty resulting from the descriptors used in QSAR studies. The 3D pharmacophore model (3D-PhaM), which can demonstrate three-dimensional interaction between the ligand -receptor (L-R), is only possible with local reactive descriptors (LRD). The Klopman index, containing both Coulombic and frontier orbital and interactions of atoms of the ligand, is a good LRD. Molecular conformers having the best matching atoms with the template conformer can be selected as one of the most suitable spatial structures for interaction with the receptor, and the LRD values of the atoms in this conformer serve to determine 3D-PhaM. The 3D-PhaM of the N-benzyl benzamide derivatives, such as the melanogenesis inhibitor, was determined by ligand-based MCET and confirmed by the structure-based FlexX docking method. For compounds of the training set (42) and the external cross validation test set (6), the Q2 (0.862) and R2 (0.913) of the statistical parameters were calculated, respectively, and were checked by rm2 (0.85) of the stringent validation.


Sujet(s)
Algorithmes , Benzamides/composition chimique , Benzamides/pharmacologie , Mélanines/biosynthèse , Modèles moléculaires , Relation quantitative structure-activité , Incertitude , Domaine catalytique , Électrons , Concentration inhibitrice 50 , Ligands
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE