Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Gigascience ; 132024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-39172544

RÉSUMÉ

BACKGROUND: As single-cell sequencing technologies continue to advance, the growing volume and complexity of the ensuing data present new analytical challenges. Large cellular populations from single-cell atlases are more difficult to visualize and require extensive processing to identify biologically relevant subpopulations. Managing these workflows is also laborious for technical users and unintuitive for nontechnical users. RESULTS: We present TooManyCellsInteractive (TMCI), a browser-based JavaScript application for interactive exploration of cell populations. TMCI provides an intuitive interface to visualize and manipulate a radial tree representation of hierarchical cell subpopulations and allows users to easily overlay, filter, and compare biological features at multiple resolutions. Here we describe the software architecture and demonstrate how we used TMCI in a pan-cancer analysis to identify unique survival pathways among drug-tolerant persister cells. CONCLUSIONS: TMCI will facilitate exploration and visualization of large-scale sequencing data in a user-friendly way. TMCI is freely available at https://github.com/schwartzlab-methods/too-many-cells-interactive. An example tree from data within this article is available at https://tmci.schwartzlab.ca/.


Sujet(s)
Analyse sur cellule unique , Logiciel , Analyse sur cellule unique/méthodes , Humains , Biologie informatique/méthodes , Tumeurs/génétique , Tumeurs/anatomopathologie
2.
Hum Mutat ; 43(6): 800-811, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35181971

RÉSUMÉ

Despite recent progress in the understanding of the genetic etiologies of rare diseases (RDs), a significant number remain intractable to diagnostic and discovery efforts. Broad data collection and sharing of information among RD researchers is therefore critical. In 2018, the Care4Rare Canada Consortium launched the project C4R-SOLVE, a subaim of which was to collect, harmonize, and share both retrospective and prospective Canadian clinical and multiomic data. Here, we introduce Genomics4RD, an integrated web-accessible platform to share Canadian phenotypic and multiomic data between researchers, both within Canada and internationally, for the purpose of discovering the mechanisms that cause RDs. Genomics4RD has been designed to standardize data collection and processing, and to help users systematically collect, prioritize, and visualize participant information. Data storage, authorization, and access procedures have been developed in collaboration with policy experts and stakeholders to ensure the trusted and secure access of data by external researchers. The breadth and standardization of data offered by Genomics4RD allows researchers to compare candidate disease genes and variants between participants (i.e., matchmaking) for discovery purposes, while facilitating the development of computational approaches for multiomic data analyses and enabling clinical translation efforts for new genetic technologies in the future.


Sujet(s)
Maladies rares , Canada , Études d'associations génétiques , Humains , Phénotype , Études prospectives , Maladies rares/diagnostic , Maladies rares/génétique , Études rétrospectives
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE