Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PLoS Negl Trop Dis ; 12(2): e0006221, 2018 02.
Article de Anglais | MEDLINE | ID: mdl-29444080

RÉSUMÉ

BACKGROUND: The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. METHODS: To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 µg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. RESULTS: IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. CONCLUSION: In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission.


Sujet(s)
Anopheles/effets des médicaments et des substances chimiques , Vecteurs insectes/effets des médicaments et des substances chimiques , Ivermectine/pharmacologie , Paludisme/transmission , Plasmodium vivax/effets des médicaments et des substances chimiques , Animaux , Anopheles/parasitologie , Brésil , Chloroquine/pharmacologie , Relation dose-effet des médicaments , Association médicamenteuse , Femelle , Humains , Vecteurs insectes/parasitologie , Ivermectine/administration et posologie , Ivermectine/sang , Ivermectine/métabolisme , Paludisme/sang , Oocystes/effets des médicaments et des substances chimiques , Oocystes/pathogénicité , Primaquine/pharmacologie
2.
Malar J ; 16(1): 474, 2017 Nov 21.
Article de Anglais | MEDLINE | ID: mdl-29162101

RÉSUMÉ

BACKGROUND: Outdoor malaria transmission hinders malaria elimination efforts in the Amazon region and novel vector control tools are needed. Ivermectin mass drug administration (MDA) to humans kills wild Anopheles, targets outdoor-feeding vectors, and can suppress malaria parasite transmission. Laboratory investigations were performed to determine ivermectin susceptibility, sporontocidal effect and inhibition of time to re-feed for the primary Amazonian malaria vector, Anopheles darlingi. METHODS: To assess ivermectin susceptibility, various concentrations of ivermectin were mixed in human blood and fed to An. darlingi. Mosquito survival was monitored daily for 7 days and a non-linear mixed effects model with Probit analysis was used to calculate lethal concentrations of ivermectin that killed 50% (LC50), 25% (LC25) and 5% (LC5) of mosquitoes. To examine ivermectin sporonticidal effect, Plasmodium vivax blood samples were collected from malaria patients and offered to mosquitoes without or with ivermectin at the LC50, LC25 or LC5. To assess ivermectin inhibition of mosquito time to re-feed, concentrations of ivermectin predicted to occur after a single oral dose of 200 µg/kg ivermectin were fed to An. darlingi. Every day for 12 days thereafter, individual mosquitoes were given the opportunity to re-feed on a volunteer. Any mosquitoes that re-blood fed or died were removed from the study. RESULTS: Ivermectin significantly reduced An. darlingi survivorship: 7-day-LC50 = 43.2 ng/ml [37.5, 48.6], -LC25 = 27.8 ng/ml [20.4, 32.9] and -LC5 = 14.8 ng/ml [7.9, 20.2]. Ivermectin compound was sporontocidal to P. vivax in An. darlingi at the LC50 and LC25 concentrations reducing prevalence by 22.6 and 17.1%, respectively, but not at the LC5. Oocyst intensity was not altered at any concentration. Ivermectin significantly delayed time to re-feed at the 4-h (48.7 ng/ml) and 12-h (26.9 ng/ml) concentrations but not 36-h (10.6 ng/ml) or 60-h (6.3 ng/ml). CONCLUSIONS: Ivermectin is lethal to An. darlingi, modestly inhibits sporogony of P. vivax, and delays time to re-feed at concentrations found in humans up to 12 h post drug ingestion. The LC50 value suggests that a higher than standard dose (400-µg/kg) is necessary to target An. darlingi. These results suggest that ivermectin MDA has potential in the Amazon region to aid malaria elimination efforts.


Sujet(s)
Anopheles/effets des médicaments et des substances chimiques , Insecticides/pharmacologie , Ivermectine/pharmacologie , Vecteurs moustiques/effets des médicaments et des substances chimiques , Plasmodium vivax/effets des médicaments et des substances chimiques , Animaux , Anopheles/parasitologie , Anopheles/physiologie , Comportement alimentaire/effets des médicaments et des substances chimiques , Femelle , Vecteurs moustiques/parasitologie , Vecteurs moustiques/physiologie , Oocystes/effets des médicaments et des substances chimiques , Pérou , Plasmodium vivax/croissance et développement
3.
Malar J ; 15(1): 491, 2016 Sep 22.
Article de Anglais | MEDLINE | ID: mdl-27660149

RÉSUMÉ

BACKGROUND: Strategies designed to advance towards malaria elimination rely on the detection and treatment of infections, rather than fever, and the interruption of malaria transmission between mosquitoes and humans. Mass drug administration with anti-malarials directed at eliminating parasites in blood, either to entire populations or targeting only those with malaria infections, are considered useful strategies to progress towards malaria elimination, but may be insufficient if applied on their own. These strategies assume a closer contact with populations, so incorporating a vector control intervention tool to those approaches could significantly enhance their efficacy. Ivermectin, an endectocide drug efficacious against a range of Anopheles species, could be added to other drug-based interventions. Interestingly, ivermectin could also be useful to target outdoor feeding and resting vectors, something not possible with current vector control tools, such as impregnated bed nets or indoor residual spraying (IRS). RESULTS: Anopheles aquasalis susceptibility to ivermectin was assessed. In vivo assessments were performed in six volunteers, being three men and three women. The effect of ivermectin on reproductive fitness and mosquito survivorship using membrane feeding assay (MFA) and direct feeding assay (DFA) was assessed and compared. The ivermectin lethal concentration (LC) values were LC50 = 47.03 ng/ml [44.68-49.40], LC25 = 31.92 ng/ml [28.60-34.57] and LC5 = 18.28 ng/ml [14.51-21.45]. Ivermectin significantly reduced the survivorship of An. aquasalis blood-fed 4 h post-ingestion (X 2 [N = 880] = 328.16, p < 0.001), 2 days post-ingestion (DPI 2) (X 2 [N = 983] = 156.75, p < 0.001), DPI 7 (X 2 [N = 935] = 31.17, p < 0.001) and DPI 14 (X 2 [N = 898] = 38.63, p < 0.001) compared to the blood fed on the untreated control. The average number of oviposited eggs per female was significantly lower in LC5 group (22.44 [SD = 3.38]) than in control (34.70 [SD = 12.09]) (X 2 [N = 199] = 10.52, p < 0.001) as well as the egg hatch rate (LC5 = 74.76 [SD = 5.48]) (Control = 81.91 [SD = 5.92]) (X 2 [N = 124] = 64.24, p < 0.001). However, no differences were observed on the number of pupae that developed from larvae (Control = 34.19 [SD = 10.42) and group (LC5 = 33.33 [SD = 11.97]) (X 2 [N = 124] = 0.96, p > 0.05). CONCLUSIONS: Ivermectin drug reduces mosquito survivorship when blood fed on volunteer blood from 4 h to 14 days post-ingestion controlling for volunteers' gender. Ivermectin at mosquito sub-lethal concentrations (LC5) reduces fecundity and egg hatch rate but not the number of pupae that developed from larvae. DFA had significantly higher effects on mosquito survival compared to MFA. The findings are presented and discussed through the prism of malaria elimination in the Amazon region.

4.
J Med Entomol ; 49(6): 1244-53, 2012 Nov.
Article de Anglais | MEDLINE | ID: mdl-23270151

RÉSUMÉ

We report on the collection ofimmatures of Aedes (Ochlerotatus) epactius Dyar & Knab from artificial containers during July through September 2011 in 12 communities located along an elevation and climate gradient extending from sea level in Veracruz State to high elevations (>2,000 m) in Veracruz and Puebla States, México. Ae. epactius was collected from 11 of the 12 study communities; the lone exception was the highest elevation community along the transect (>2,400 m). This mosquito species was thus encountered at elevations ranging from near sea level in Veracruz City on the Gulf of México to above 2,100 m in Puebla City in the central highlands. Collection sites included the city of C6rdoba, located at approximately 850 m, from which some of the first described specimens of Ae. epactius were collected in 1908. Estimates for percentage of premises in each community with Ae. epactius pupae present, and abundance of Ae. epactius pupae on the study premises, suggest that along the transect in central México, the mosquito is present but rare at sea level, most abundant at mid-range elevations from 1,250-1,750 m and then decreases in abundance above 1,800 m. Statistically significant parabolic relationships were found between percentage of premises with Ae. epactius pupae present and average minimum daily temperature, cumulative growing degree-days, and rainfall. We recorded Ae. epactius immatures from a wide range of container types including cement water tanks, barrels/ drums, tires, large earthen jars, small discarded containers, buckets, cement water troughs, flower pots, cement water cisterns, and larger discarded containers. There were 45 documented instances of co-occurrence of Ae. epactius and Aedes aegypti (L.) immatures in individual containers.


Sujet(s)
Aedes , Altitude , Climat , Ochlerotatus , Animaux , Femelle , Géographie , Mâle , Mexique , Densité de population
5.
Am J Trop Med Hyg ; 87(5): 902-9, 2012 Nov.
Article de Anglais | MEDLINE | ID: mdl-22987656

RÉSUMÉ

México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer.


Sujet(s)
Aedes/virologie , Altitude , Virus de la dengue/isolement et purification , Vecteurs insectes/virologie , Animaux , Mexique , Temps (météorologie)
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE