Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 19 de 19
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Cell Biol ; 223(4)2024 04 01.
Article de Anglais | MEDLINE | ID: mdl-38353656

RÉSUMÉ

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.


Sujet(s)
Cytosquelette d'actine , Actines , Myosine de type II , Cytosquelette d'actine/métabolisme , Actines/métabolisme , Animaux , Souris , Fibroblastes , Humains , Cellules HEK293 , Myosine de type II/métabolisme
2.
bioRxiv ; 2023 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-37162845

RÉSUMÉ

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet the biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the actin architecture plays a minimal direct role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes sub-resolution filament stacks prior to partitioning into clusters that feed higher-order networks. Together these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.

3.
Gastro Hep Adv ; 1(5): 807-823, 2022.
Article de Anglais | MEDLINE | ID: mdl-37829188

RÉSUMÉ

BACKGROUND AND AIMS: An interactive regulatory network assembled through the induction and downregulation of distinct transcription factors governs acinar cell maturation. Understanding how this network is built is relevant for protocols of directed pancreatic acinar differentiation. The murine transcription factor Prox1 is highly expressed in multipotent pancreatic progenitors and in various mature pancreatic cell types except for acinar cells. In this study, we investigated when is Prox1 expression terminated in developing acinar cells and the potential involvement of its activity in acinar cell specification/differentiation. We also investigated the effects of sustained Prox1 expression in acinar maturation and maintenance. METHODS: Prox1 acinar expression was analyzed by immunofluorescence and confocal microscopy. Prox1-null embryos (Prox1GFPCre/Δ), Prox1AcOE transgenic mice, histologic and immunostaining methods, transmission electron microscopy, functional assays, and quantitative RNA and RNA-sequencing methods were used to investigate the effects of Prox1 functional deficiency and sustained Prox1 expression in acinar maturation and homeostasis. RESULTS: Immunostaining results reveal transient Prox1 expression in newly committed embryonic acinar cells. RNA-sequencing demonstrate precocious expression of multiple "late" acinar genes in the pancreas of Prox1GFPCre/Δ embryos. Prox1AcOE transgenic mice carrying sustained Prox1 acinar expression have relatively normal pancreas development. In contrast, Prox1AcOE adult mice have severe pancreatic alterations involving reduced acinar gene expression, abnormal acinar secretory granules, acinar atrophy, increased endoplasmic reticulum stress, and mild chronic inflammation. CONCLUSION: Prox1 transient expression in early acinar cells is necessary for correct sequential gene expression. Prox1 expression is terminated in developing acinar cells to complete maturation and to preserve homeostasis.

4.
Blood ; 137(3): 398-409, 2021 01 21.
Article de Anglais | MEDLINE | ID: mdl-33036023

RÉSUMÉ

The final stages of mammalian erythropoiesis involve enucleation, membrane and proteome remodeling, and organelle clearance. Concomitantly, the erythroid membrane skeleton establishes a unique pseudohexagonal spectrin meshwork that is connected to the membrane through junctional complexes. The mechanism and signaling pathways involved in the coordination of these processes are unclear. The results of our study revealed an unexpected role of the membrane skeleton in the modulation of proteome remodeling and organelle clearance during the final stages of erythropoiesis. We found that diaphanous-related formin mDia2 is a master regulator of the integrity of the membrane skeleton through polymerization of actin protofilament in the junctional complex. The mDia2-deficient terminal erythroid cell contained a disorganized and rigid membrane skeleton that was ineffective in detaching the extruded nucleus. In addition, the disrupted skeleton failed to activate the endosomal sorting complex required for transport-III (ESCRT-III) complex, which led to a global defect in proteome remodeling, endolysosomal trafficking, and autophagic organelle clearance. Chmp5, a component of the ESCRT-III complex, is regulated by mDia2-dependent activation of the serum response factor and is essential for membrane remodeling and autophagosome-lysosome fusion. Mice with loss of Chmp5 in hematopoietic cells in vivo resembled the phenotypes in mDia2-knockout mice. Furthermore, overexpression of Chmp5 in mDia2-deficient hematopoietic stem and progenitor cells significantly restored terminal erythropoiesis in vivo. These findings reveal a formin-regulated signaling pathway that connects the membrane skeleton to proteome remodeling, enucleation, and organelle clearance during terminal erythropoiesis.


Sujet(s)
Érythroblastes/métabolisme , Membrane érythrocytaire/métabolisme , Organites/métabolisme , Protéome/métabolisme , Animaux , Autophagosomes/métabolisme , Séquence nucléotidique , Complexes de tri endosomique requis pour le transport/métabolisme , Endosomes/métabolisme , Érythroblastes/ultrastructure , Membrane érythrocytaire/ultrastructure , Érythropoïèse , Lysosomes/métabolisme , Fusion membranaire , Souris de lignée C57BL , Protéines associées aux microtubules/déficit , Protéines associées aux microtubules/métabolisme , NADPH dehydrogenase/déficit , NADPH dehydrogenase/métabolisme , Organites/ultrastructure , Réticulocytes/métabolisme , Réticulocytes/ultrastructure
5.
J Neurosci ; 37(27): 6442-6459, 2017 07 05.
Article de Anglais | MEDLINE | ID: mdl-28576936

RÉSUMÉ

Dendritic spines are postsynaptic structures in neurons often having a mushroom-like shape. Physiological significance and cytoskeletal mechanisms that maintain this shape are poorly understood. The spectrin-based membrane skeleton maintains the biconcave shape of erythrocytes, but whether spectrins also determine the shape of nonerythroid cells is less clear. We show that ßIII spectrin in hippocampal and cortical neurons from rodent embryos of both sexes is distributed throughout the somatodendritic compartment but is particularly enriched in the neck and base of dendritic spines and largely absent from spine heads. Electron microscopy revealed that ßIII spectrin forms a detergent-resistant cytoskeletal network at these sites. Knockdown of ßIII spectrin results in a significant decrease in the density of dendritic spines. Surprisingly, the density of presynaptic terminals is not affected by ßIII spectrin knockdown. However, instead of making normal spiny synapses, the presynaptic structures in ßIII spectrin-depleted neurons make shaft synapses that exhibit increased amplitudes of miniature EPSCs indicative of excessive postsynaptic excitation. Thus, ßIII spectrin is necessary for formation of the constricted shape of the spine neck, which in turn controls communication between the synapse and the parent dendrite to prevent excessive excitation. Notably, mutations of SPTNB2 encoding ßIII spectrin are associated with neurodegenerative syndromes, spinocerebellar ataxia Type 5, and spectrin-associated autosomal recessive cerebellar ataxia Type 1, but molecular mechanisms linking ßIII spectrin functions to neuronal pathologies remain unresolved. Our data suggest that spinocerebellar ataxia Type 5 and spectrin-associated autosomal recessive cerebellar ataxia Type 1 pathology likely arises from poorly controlled synaptic activity that leads to excitotoxicity and neurodegeneration.SIGNIFICANCE STATEMENT Dendritic spines are small protrusions from neuronal dendrites that make synapses with axons of other neurons in the brain. Dendritic spines usually have a mushroom-like shape, which is essential for brain functions, because aberrant spine morphology is associated with many neuropsychiatric disorders. The bulbous head of a mushroom-shaped spine makes the synapse, whereas the narrow neck transmits the incoming signals to the dendrite and supposedly controls the signal propagation. We show that a cytoskeletal protein ßIII spectrin plays a key role for the formation of narrow spine necks. In the absence of ßIII spectrin, dendritic spines collapse onto dendrites. As a result, synaptic strength exceeds acceptable levels and damages neurons, explaining pathology of human syndromes caused by ßIII spectrin mutations.


Sujet(s)
Épines dendritiques/physiologie , Épines dendritiques/ultrastructure , Neurogenèse/physiologie , Neurones/physiologie , Spectrine/métabolisme , Transmission synaptique/physiologie , Animaux , Encéphale/physiologie , Encéphale/ultrastructure , Cellules cultivées , Mâle , Neurones/ultrastructure , Rats , Rat Sprague-Dawley
6.
Sci Transl Med ; 9(394)2017 06 14.
Article de Anglais | MEDLINE | ID: mdl-28615357

RÉSUMÉ

Primary graft dysfunction is the predominant driver of mortality and graft loss after lung transplantation. Recruitment of neutrophils as a result of ischemia-reperfusion injury is thought to cause primary graft dysfunction; however, the mechanisms that regulate neutrophil influx into the injured lung are incompletely understood. We found that donor-derived intravascular nonclassical monocytes (NCMs) are retained in human and murine donor lungs used in transplantation and can be visualized at sites of endothelial injury after reperfusion. When NCMs in the donor lungs were depleted, either pharmacologically or genetically, neutrophil influx and lung graft injury were attenuated in both allogeneic and syngeneic models. Similar protection was observed when the patrolling function of donor NCMs was impaired by deletion of the fractalkine receptor CX3CR1. Unbiased transcriptomic profiling revealed up-regulation of MyD88 pathway genes and a key neutrophil chemoattractant, CXCL2, in donor-derived NCMs after reperfusion. Reconstitution of NCM-depleted donor lungs with wild-type but not MyD88-deficient NCMs rescued neutrophil migration. Donor NCMs, through MyD88 signaling, were responsible for CXCL2 production in the allograft and neutralization of CXCL2 attenuated neutrophil influx. These findings suggest that therapies to deplete or inhibit NCMs in donor lung might ameliorate primary graft dysfunction with minimal toxicity to the recipient.


Sujet(s)
Allogreffes/immunologie , Monocytes/métabolisme , Granulocytes neutrophiles/métabolisme , Dysfonction primaire du greffon/immunologie , Dysfonction primaire du greffon/métabolisme , Animaux , Cytométrie en flux , Humains , Transplantation pulmonaire/effets indésirables , Souris , Microscopie de fluorescence
7.
Dev Neurobiol ; 75(12): 1441-61, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-25846486

RÉSUMÉ

The localized debundling of the axonal microtubule array and the entry of microtubules into axonal filopodia are two defining features of collateral branching. We report that nerve growth factor (NGF), a branch-inducing signal, increases the frequency of microtubule debundling along the axon shaft of chicken embryonic sensory neurons. Sites of debundling correlate strongly with the localized targeting of microtubules into filopodia. Platinum replica electron microscopy suggests physical interactions between debundled microtubules and axonal actin filaments. However, as evidenced by depolymerization of actin filaments and inhibition of myosin II, actomyosin force generation does not promote debundling. In contrast, loss of actin filaments or inhibition of myosin II activity promotes debundling, indicating that axonal actomyosin forces suppress debundling. MAP1B is a microtubule associated protein that represses axon branching. Following treatment with NGF, microtubules penetrating filopodia during the early stages of branching exhibited lower levels of associated MAP1B. NGF increased and decreased the levels of MAP1B phosphorylated at a GSK-3ß site (pMAP1B) along the axon shaft and within axonal filopodia, respectively. The levels of MAP1B and pMAP1B were not altered at sites of debundling, relative to the rest of the axon. Unlike the previously determined effects of NGF on the axonal actin cytoskeleton, the effects of NGF on microtubule debundling were not affected by inhibition of protein synthesis. Collectively, these data indicate that NGF promotes localized axonal microtubule debundling, that actomyosin forces antagonize microtubule debundling, and that NGF regulates pMAP1B in axonal filopodia during the early stages of collateral branch formation.


Sujet(s)
Protéines aviaires/métabolisme , Axones/métabolisme , Protéines associées aux microtubules/métabolisme , Microtubules/métabolisme , Facteur de croissance nerveuse/métabolisme , Pseudopodes/métabolisme , Animaux , Axones/ultrastructure , Embryon de poulet , Technique d'immunofluorescence , Glycogen Synthase Kinase 3/métabolisme , Glycogen synthase kinase 3 beta , Immunohistochimie , Microscopie électronique , Microtubules/ultrastructure , Acide oléanolique/analogues et dérivés , Phosphorylation , Pseudopodes/ultrastructure , Saponines , Cellules réceptrices sensorielles/métabolisme , Cellules réceptrices sensorielles/ultrastructure , Transfection
8.
J Cell Biol ; 205(1): 67-81, 2014 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-24711503

RÉSUMÉ

The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon-dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar-globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin ßIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling.


Sujet(s)
Cytosquelette d'actine/métabolisme , Actines/métabolisme , Axones/métabolisme , Hippocampe/métabolisme , Protéines de tissu nerveux/métabolisme , Cytosquelette d'actine/effets des médicaments et des substances chimiques , Cytosquelette d'actine/ultrastructure , Animaux , Axones/effets des médicaments et des substances chimiques , Axones/ultrastructure , Composés hétérocycliques bicycliques/pharmacologie , Polarité de la cellule , Cellules cultivées , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/embryologie , Hippocampe/ultrastructure , Immunohistochimie , Microscopie électronique/méthodes , Neurogenèse , Rat Sprague-Dawley , Thiazolidines/pharmacologie , Facteurs temps
9.
Curr Biol ; 24(4): 409-14, 2014 Feb 17.
Article de Anglais | MEDLINE | ID: mdl-24485837

RÉSUMÉ

Mitochondria are dynamic organelles, undergoing both fission and fusion regularly in interphase cells. Mitochondrial fission is thought to be part of a quality-control mechanism whereby damaged mitochondrial components are segregated from healthy components in an individual mitochondrion, followed by mitochondrial fission and degradation of the damaged daughter mitochondrion. Fission also plays a role in apoptosis. Defects in mitochondrial dynamics can lead to neurodegenerative diseases such as Alzheimer's disease. Mitochondrial fission requires the dynamin GTPase Drp1, which assembles in a ring around the mitochondrion and appears to constrict both outer and inner mitochondrial membranes. However, mechanisms controlling Drp1 assembly on mammalian mitochondria are unclear. Recent results show that actin polymerization, driven by the endoplasmic reticulum-bound formin protein INF2, stimulates Drp1 assembly at fission sites. Here, we show that myosin II also plays a role in fission. Chemical inhibition by blebbistatin or small interfering RNA (siRNA)-mediated suppression of myosin IIA or myosin IIB causes an increase in mitochondrial length in both control cells and cells expressing constitutively active INF2. Active myosin II accumulates in puncta on mitochondria in an actin- and INF2-dependent manner. In addition, myosin II inhibition decreases Drp1 association with mitochondria. Based on these results, we propose a mechanistic model in which INF2-mediated actin polymerization leads to myosin II recruitment and constriction at the fission site, enhancing subsequent Drp1 accumulation and fission.


Sujet(s)
Mitochondries/métabolisme , Dynamique mitochondriale , Myosine de type II/métabolisme , Lignée cellulaire tumorale , Protéines du cytosquelette/génétique , Protéines du cytosquelette/métabolisme , Formines , Protéines G/génétique , Protéines G/métabolisme , Humains , Protéines des microfilaments/génétique , Protéines des microfilaments/métabolisme
10.
Science ; 339(6118): 464-7, 2013 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-23349293

RÉSUMÉ

Mitochondrial fission is fundamentally important to cellular physiology. The dynamin-related protein Drp1 mediates fission, and interaction between mitochondrion and endoplasmic reticulum (ER) enhances fission. However, the mechanism for Drp1 recruitment to mitochondria is unclear, although previous results implicate actin involvement. Here, we found that actin polymerization through ER-localized inverted formin 2 (INF2) was required for efficient mitochondrial fission in mammalian cells. INF2 functioned upstream of Drp1. Actin filaments appeared to accumulate between mitochondria and INF2-enriched ER membranes at constriction sites. Thus, INF2-induced actin filaments may drive initial mitochondrial constriction, which allows Drp1-driven secondary constriction. Because INF2 mutations can lead to Charcot-Marie-Tooth disease, our results provide a potential cellular mechanism for this disease state.


Sujet(s)
Cytosquelette d'actine/métabolisme , Actines/métabolisme , Réticulum endoplasmique/métabolisme , Protéines des microfilaments/métabolisme , Mitochondries/métabolisme , Mitochondries/ultrastructure , Dynamique mitochondriale , Cytosquelette d'actine/ultrastructure , Animaux , Composés hétérocycliques bicycliques/pharmacologie , Lignée cellulaire tumorale , Dynamines , Réticulum endoplasmique/ultrastructure , Formines , dGTPases/métabolisme , Humains , Souris , Protéines des microfilaments/génétique , Protéines associées aux microtubules/métabolisme , Protéines mitochondriales/métabolisme , Cellules NIH 3T3 , Multimérisation de protéines , Petit ARN interférent , Protéines de fusion recombinantes/métabolisme , Thiazolidines/pharmacologie
11.
Curr Biol ; 22(12): 1109-15, 2012 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-22608511

RÉSUMÉ

Axon branching is fundamental to the development of the peripheral and central nervous system. Branches that sprout from the axon shaft are termed collateral or interstitial branches. Collateral branching of axons requires the formation of filopodia from actin microfilaments (F-actin) and their engorgement with microtubules (MTs) that splay from the axon shaft. The mechanisms that drive and coordinate the remodeling of actin and MTs during branch morphogenesis are poorly understood. Septins comprise a family of GTP-binding proteins that oligomerize into higher-order structures, which associate with membranes and the actin and microtubule cytoskeleton. Here, we show that collateral branching of axons requires SEPT6 and SEPT7, two interacting septins. In the axons of sensory neurons, both SEPT6 and SEPT7 accumulate at incipient sites of filopodia formation. We show that SEPT6 localizes to axonal patches of F-actin and increases the recruitment of cortactin, a regulator of Arp2/3-mediated actin polymerization, triggering the emergence of filopodia. Conversely, SEPT7 promotes the entry of axonal MTs into filopodia, enabling the formation of collateral branches. Surprisingly, septins provide a novel mechanism for the collateral branching of axons by coordinating the remodeling of the actin and microtubule cytoskeleton.


Sujet(s)
Actines/métabolisme , Axones/physiologie , Cônes de croissance/physiologie , Microtubules/métabolisme , Morphogenèse/physiologie , Septines/métabolisme , Analyse de variance , Animaux , Axones/ultrastructure , Technique de Western , Embryon de poulet , Cortactine/métabolisme , Amorces ADN/génétique , Électrophorèse sur gel de polyacrylamide , Ganglions sensitifs des nerfs spinaux/cytologie , Protéines à fluorescence verte/métabolisme , Cônes de croissance/ultrastructure , Hippocampe/cytologie , Traitement d'image par ordinateur , Immunoprécipitation , Microscopie électronique , Microscopie de fluorescence , Modèles biologiques , Pseudopodes/métabolisme , Petit ARN interférent/génétique , Rats , Septines/physiologie , Imagerie accélérée
12.
J Biol Chem ; 287(20): 16860-8, 2012 May 11.
Article de Anglais | MEDLINE | ID: mdl-22433849

RÉSUMÉ

Host-derived proteases are crucial for the successful infection of vertebrates by several pathogens, including the Lyme disease spirochete bacterium, Borrelia burgdorferi. B. burgdorferi must traverse tissue barriers in the tick vector during transmission to the host and during dissemination within the host, and it must disrupt immune challenges to successfully complete its infectious cycle. It has been proposed that B. burgdorferi can accomplish these tasks without an endogenous extra-cytoplasmic protease by commandeering plasminogen, the highly abundant precursor of the vertebrate protease plasmin. However, the molecular mechanism by which B. burgdorferi immobilizes plasminogen to its surface remains obscure. The data presented here demonstrate that the outer surface protein C (OspC) of B. burgdorferi is a potent plasminogen receptor on the outer membrane of the bacterium. OspC-expressing spirochetes readily bind plasminogen, whereas only background levels of plasminogen are detectable on OspC-deficient strains. Furthermore, plasminogen binding by OspC-expressing spirochetes can be significantly reduced using anti-OspC antibodies. Co-immunofluorescence staining assays demonstrate that wild-type bacteria immobilize plasminogen only if they are actively expressing OspC regardless of the expression of other surface proteins. The co-localization of plasminogen and OspC on OspC-expressing spirochetes further implicates OspC as a biologically relevant plasminogen receptor on the surface of live B. burgdorferi.


Sujet(s)
Antigènes bactériens/biosynthèse , Protéines de la membrane externe bactérienne/biosynthèse , Borrelia burgdorferi/métabolisme , Régulation de l'expression des gènes bactériens/physiologie , Maladie de Lyme/métabolisme , Plasminogène/métabolisme , Antigènes bactériens/génétique , Protéines de la membrane externe bactérienne/agonistes , Protéines de la membrane externe bactérienne/génétique , Borrelia burgdorferi/génétique , Borrelia burgdorferi/pathogénicité , Humains , Maladie de Lyme/génétique , Plasminogène/génétique
13.
Mol Biol Cell ; 22(24): 4822-33, 2011 Dec.
Article de Anglais | MEDLINE | ID: mdl-21998196

RÉSUMÉ

INF2 is a unique formin that can both polymerize and depolymerize actin filaments. Mutations in INF2 cause the kidney disease focal and segmental glomerulosclerosis. INF2 can be expressed as two C-terminal splice variants: CAAX and non-CAAX. The CAAX isoform contains a C-terminal prenyl group and is tightly bound to endoplasmic reticulum (ER). The localization pattern and cellular function of the non-CAAX isoform have not been studied. Here we find that the two isoforms are expressed in a cell type-dependent manner, with CAAX predominant in 3T3 fibroblasts and non-CAAX predominant in U2OS, HeLa, and Jurkat cells. Although INF2-CAAX is ER localized in an actin-independent manner, INF2-non-CAAX localizes in an actin-dependent meshwork pattern distinct from ER. INF2-non-CAAX is loosely attached to this meshwork, being extracted by brief digitonin treatment. Suppression of INF2-non-CAAX causes fragmentation of the Golgi apparatus. This effect is counteracted by treatment with the actin monomer-sequestering drug latrunculin B. We also find discrete patches of actin filaments in the peri-Golgi region, and these patches are reduced upon INF2 suppression. Our results suggest that the non-CAAX isoform of INF2 serves a distinct cellular function from that of the CAAX isoform.


Sujet(s)
Épissage alternatif/physiologie , Appareil de Golgi/métabolisme , Protéines des microfilaments/biosynthèse , Épissage alternatif/effets des médicaments et des substances chimiques , Animaux , Composés hétérocycliques bicycliques/pharmacologie , Formines , Appareil de Golgi/génétique , Cellules HeLa , Humains , Cellules Jurkat , Souris , Protéines des microfilaments/génétique , Cellules NIH 3T3 , Isoformes de protéines/biosynthèse , Isoformes de protéines/génétique , Thiazolidines/pharmacologie
14.
Dev Neurobiol ; 71(9): 747-58, 2011 Sep.
Article de Anglais | MEDLINE | ID: mdl-21557512

RÉSUMÉ

The emergence of axonal filopodia is the first step in the formation of axon collateral branches. In vitro, axonal filopodia emerge from precursor cytoskeletal structures termed actin patches. However, nothing is known about the cytoskeletal dynamics of the axon leading to the formation of filopodia in the relevant tissue environment. In this study we investigated the role of the actin nucleating Arp2/3 complex in the formation of sensory axon actin patches, filopodia, and branches. By combining in ovo chicken embryo electroporation mediated gene delivery with a novel acute ex vivo spinal cord preparation, we demonstrate that actin patches form along sensory axons and give rise to filopodia in situ. Inhibition of Arp2/3 complex function in vitro and in vivo decreases the number of axonal filopodia. In vitro, Arp2/3 complex subunits and upstream regulators localize to actin patches. Analysis of the organization of actin filaments in actin patches using platinum replica electron microscopy reveals that patches consist of networks of actin filaments, and filaments in axonal filopodia exhibit an organization consistent with the Arp2/3-based convergent elongation mechanism. Nerve growth factor (NGF) promotes formation of axonal filopodia and branches through phosphoinositide 3-kinase (PI3K). Inhibition of the Arp2/3 complex impairs NGF/PI3K-induced formation of axonal actin patches, filopodia, and the formation of collateral branches. Collectively, these data reveal that the Arp2/3 complex contributes to the formation of axon collateral branches through its involvement in the formation of actin patches leading to the emergence of axonal filopodia.


Sujet(s)
Cytosquelette d'actine/métabolisme , Protéine-2 apparentée à l'actine/physiologie , Protéine-3 apparentée à l'actine/physiologie , Axones/physiologie , Différenciation cellulaire/physiologie , Cellules souches embryonnaires/physiologie , Cônes de croissance/physiologie , Pseudopodes/métabolisme , Cytosquelette d'actine/physiologie , Protéine-2 apparentée à l'actine/antagonistes et inhibiteurs , Protéine-3 apparentée à l'actine/antagonistes et inhibiteurs , Animaux , Embryon de poulet , Poulets , Cellules souches embryonnaires/cytologie , Cellules souches embryonnaires/métabolisme , Cellules souches neurales/cytologie , Cellules souches neurales/métabolisme , Cellules souches neurales/physiologie , Culture de cellules primaires , Pseudopodes/physiologie , Cellules réceptrices sensorielles/cytologie , Cellules réceptrices sensorielles/physiologie
15.
J Cell Biol ; 189(2): 339-52, 2010 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-20404114

RÉSUMÉ

alphaE-catenin binds the cell-cell adhesion complex of E-cadherin and beta-catenin (beta-cat) and regulates filamentous actin (F-actin) dynamics. In vitro, binding of alphaE-catenin to the E-cadherin-beta-cat complex lowers alphaE-catenin affinity for F-actin, and alphaE-catenin alone can bind F-actin and inhibit Arp2/3 complex-mediated actin polymerization. In cells, to test whether alphaE-catenin regulates actin dynamics independently of the cadherin complex, the cytosolic alphaE-catenin pool was sequestered to mitochondria without affecting overall levels of alphaE-catenin or the cadherin-catenin complex. Sequestering cytosolic alphaE-catenin to mitochondria alters lamellipodia architecture and increases membrane dynamics and cell migration without affecting cell-cell adhesion. In contrast, sequestration of cytosolic alphaE-catenin to the plasma membrane reduces membrane dynamics. These results demonstrate that the cytosolic pool of alphaE-catenin regulates actin dynamics independently of cell-cell adhesion.


Sujet(s)
Actines/métabolisme , Cadhérines/métabolisme , Adhérence cellulaire/physiologie , alpha-Caténine/métabolisme , Complexe Arp-2-3/génétique , Complexe Arp-2-3/métabolisme , Animaux , Cadhérines/génétique , Lignée cellulaire , Membrane cellulaire/métabolisme , Membrane cellulaire/ultrastructure , Mouvement cellulaire/physiologie , Cytoplasme/métabolisme , Chiens , Humains , Mitochondries/métabolisme , Multimérisation de protéines , Pseudopodes/métabolisme , Interférence par ARN , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , alpha-Caténine/composition chimique , alpha-Caténine/génétique , src-Family kinases/génétique , src-Family kinases/métabolisme
16.
Mol Biol Cell ; 21(8): 1350-61, 2010 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-20181827

RÉSUMÉ

Actin arginylation regulates lamella formation in motile fibroblasts, but the underlying molecular mechanisms are unknown. To understand how arginylation affects the actin cytoskeleton, we investigated the biochemical properties and the structural organization of actin filaments in wild-type and arginyltransferase (Ate1) knockout cells. We found that Ate1 knockout results in a dramatic reduction of the actin polymer levels in vivo accompanied by a corresponding increase in the monomer level. Purified nonarginylated actin has altered polymerization properties, and actin filaments from Ate1 knockout cells show altered interactions with several associated proteins. Ate1 knockout cells have severe impairment of cytoskeletal organization throughout the cell. Thus, arginylation regulates the ability of actin to form filaments in the whole cell rather than preventing the collapse of preformed actin networks at the cell leading edge as proposed in our previous model. This regulation is achieved through interconnected mechanisms that involve actin polymerization per se and through binding of actin-associated proteins.


Sujet(s)
Protéines de coiffe de l'actine/métabolisme , Actines/métabolisme , Arginine/métabolisme , Espace intracellulaire/métabolisme , Cytosquelette d'actine/métabolisme , Cytosquelette d'actine/ultrastructure , Actines/composition chimique , Actines/ultrastructure , Animaux , Lignée cellulaire , Gelsoline/métabolisme , Humains , Souris , Modèles biologiques , Liaison aux protéines , Structure quaternaire des protéines , Pseudopodes/métabolisme , Pseudopodes/ultrastructure
17.
Mol Biol Cell ; 21(1): 165-76, 2010 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-19889835

RÉSUMÉ

Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.


Sujet(s)
Actines/métabolisme , Forme de la cellule/physiologie , Cytosquelette/métabolisme , Épines dendritiques/métabolisme , Hippocampe/cytologie , Synapses/métabolisme , Marqueurs biologiques/métabolisme , Protéines du cytosquelette/ultrastructure , Cytosquelette/ultrastructure , Épines dendritiques/ultrastructure , Technique d'immunofluorescence , Modèles biologiques , Pseudopodes/métabolisme , Pseudopodes/ultrastructure , Synapses/ultrastructure
18.
Mol Biol Cell ; 19(4): 1561-74, 2008 Apr.
Article de Anglais | MEDLINE | ID: mdl-18256280

RÉSUMÉ

A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 complex-independent manner. Depletion of Arp2/3 complex in primary neurons and neuroblastoma cells by small interfering RNA significantly decreased the F-actin contents and inhibited lamellipodial protrusion and retrograde flow in growth cones, but also initiation and dynamics of filopodia. Using electron microscopy, immunochemistry, and gene expression, we demonstrated the presence of the Arp2/3 complex-dependent dendritic network of actin filaments in growth cones, and we showed that individual actin filaments in filopodia originated at Arp2/3 complex-dependent branch points in lamellipodia, thus providing a mechanistic explanation of Arp2/3 complex functions during filopodia formation. Additionally, Arp2/3 complex depletion led to formation of multiple neurites, erratic pattern of neurite extension, and excessive formation of stress fibers and focal adhesions. Consistent with this phenotype, RhoA activity was increased in Arp2/3 complex-depleted cells, indicating that besides nucleating actin filaments, Arp2/3 complex may influence cell motility by altering Rho GTPase signaling.


Sujet(s)
Complexe Arp-2-3/physiologie , Cônes de croissance/physiologie , Neurites/physiologie , Neurones/physiologie , Neurones/ultrastructure , Pseudopodes/physiologie , Complexe Arp-2-3/antagonistes et inhibiteurs , Complexe Arp-2-3/génétique , Animaux , Séquence nucléotidique , Différenciation cellulaire , Lignée cellulaire tumorale , Mouvement cellulaire , Cellules cultivées , Humains , Souris , Interférence par ARN , Petit ARN interférent/génétique , Rats , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Xenopus , Protéine G rac1/génétique , Protéine G rac1/métabolisme , Protéine G RhoA/métabolisme
19.
Biol Reprod ; 74(5): 807-15, 2006 May.
Article de Anglais | MEDLINE | ID: mdl-16421232

RÉSUMÉ

The nucleolar precursor bodies (NPBs) are numerous discrete entities present in the nuclei of early mammalian embryos, which structurally support active rRNA genes. However, whether all rRNA genes, including those not transcribed, are spatially associated with NPBs, and moreover what is the general arrangement of ribosomal DNA (rDNA) in early mouse embryos, still remain unanswered questions. In our study, we examined the localization of rDNA in transcriptionally silent (one-cell and early two-cell) and transcriptionally active (late two-cell) mouse embryos by highly sensitive fluorescence in situ hybridization with probes complementary to mouse rDNA repeats. The results obtained showed that irrespective of the rDNA transcriptional status, one or more NPBs per nucleus were not structurally associated with rDNA. These observations support the idea that NPBs are heterogeneous in their ability to recruit rRNA genes and thus to participate in reassembly of the mature nucleolus. As in somatic cells, and despite the absence of the characteristic nucleoli, the general arrangement of rRNA genes in early mouse embryos reflected the intensity of rDNA transcription. Ribosomal RNA genes were unequally distributed with respect to repeat putative copy numbers between nucleolar organizing region (NOR)-bearing chromosomes at the first cleavage division, and more strikingly, between sister chromatid NORs of a single nucleolar organizing chromosome. The latter indicates that sister chromatids might harbor various numbers of rRNA gene copies, and that the genes might be unequally distributed between the two blastomeres during the first cleavage mitosis.


Sujet(s)
ADN ribosomique/métabolisme , Embryon de mammifère/métabolisme , Hybridation fluorescente in situ , Animaux , Chromosomes de mammifère , Femelle , Mâle , Métaphase , Souris , Souris de lignée C57BL , Souris de lignée CBA , Transcription génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE