Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 40
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Nat Commun ; 15(1): 4182, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38755157

RÉSUMÉ

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Sujet(s)
Antigènes CD19 , Moelle osseuse , Interleukines , Plasmocytes , Humains , Plasmocytes/immunologie , Interleukines/immunologie , Interleukines/métabolisme , Moelle osseuse/immunologie , Antigènes CD19/immunologie , Antigènes CD19/métabolisme , Immunité humorale/immunologie , COVID-19/immunologie , COVID-19/virologie , SARS-CoV-2/immunologie , Cellules de la moelle osseuse/immunologie , Cellules de la moelle osseuse/cytologie , Analyse sur cellule unique , Adulte , Lymphocytes B/immunologie , Cellules productrices d'anticorps/immunologie , Femelle , Mâle , Vaccination , Adulte d'âge moyen , Vaccin diphtérie-tétanos-coqueluche/immunologie
3.
Eur J Immunol ; 54(3): e2350664, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38088236

RÉSUMÉ

COVID-19 is a systemic inflammatory disease initiated by SARS-CoV-2 virus infection. Multiple vaccines against the Wuhan variant of SARS-CoV-2 have been developed including a whole virion beta-propiolactone-inactivated vaccine based on the B.1.1 strain (CoviVac). Since most of the population has been vaccinated by targeting the original or early variants of SARS-CoV-2, the emergence of novel mutant variants raises concern over possible evasion of vaccine-induced immune responses. Here, we report on the mechanism of protection by CoviVac, a whole virion-based vaccine, against the Omicron variant. CoviVac-immunized K18-hACE2 Tg mice were protected against both prototype B.1.1 and BA.1-like (Omicron) variants. Subsequently, vaccinated K18-hACE2 Tg mice rapidly cleared the infection via cross-reactive T-cell responses and cross-reactive, non-neutralizing antibodies recognizing the Omicron variant Spike protein. Thus, our data indicate that efficient protection from SARS-CoV-2 variants can be achieved by the orchestrated action of cross-reactive T cells and non-neutralizing antibodies.


Sujet(s)
COVID-19 , Melphalan , SARS-CoV-2 , Gammaglobulines , Animaux , Humains , Souris , Vaccins inactivés , Production d'anticorps , COVID-19/prévention et contrôle , Lymphocytes T , Virion , Anticorps neutralisants à large spectre , Anticorps neutralisants , Anticorps antiviraux
4.
Front Immunol ; 14: 1303795, 2023.
Article de Anglais | MEDLINE | ID: mdl-38124735

RÉSUMÉ

Akkermansia muciniphila is a gram-negative anaerobic bacterium, which represents a part of the commensal human microbiota. Decline in the abundance of A. muciniphila among other microbial species in the gut correlates with severe systemic diseases such as diabetes, obesity, intestinal inflammation and colorectal cancer. Due to its mucin-reducing and immunomodulatory properties, the use of probiotics containing Akkermansia sp. appears as a promising approach to the treatment of metabolic and inflammatory diseases. In particular, a number of studies have focused on the role of A. muciniphila in colorectal cancer. Of note, the results of these studies in mice are contradictory: some reported a protective role of A. muciniphila in colorectal cancer, while others demonstrated that administration of A. muciniphila could aggravate the course of the disease resulting in increased tumor burden. More recent studies suggested the immunomodulatory effect of certain unique surface antigens of A. muciniphila on the intestinal immune system. In this Perspective, we attempt to explain how A. muciniphila contributes to protection against colorectal cancer in some models, while being pathogenic in others. We argue that differences in the experimental protocols of administration of A. muciniphila, as well as viability of bacteria, may significantly affect the results. In addition, we hypothesize that antigens presented by pasteurized bacteria or live A. muciniphila may exert distinct effects on the barrier functions of the gut. Finally, A. muciniphila may reduce the mucin barrier and exerts combined effects with other bacterial species in either promoting or inhibiting cancer development.


Sujet(s)
Tumeurs colorectales , Mucines , Humains , Animaux , Souris , Composition en bases nucléiques , Phylogenèse , ARN ribosomique 16S , Analyse de séquence d'ADN
5.
Cell Host Microbe ; 31(11): 1866-1881.e10, 2023 11 08.
Article de Anglais | MEDLINE | ID: mdl-37944493

RÉSUMÉ

The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.


Sujet(s)
COVID-19 , Microbiote , Humains , Animaux , Souris , Glycoprotéine de spicule des coronavirus , Production d'anticorps , Mimétisme moléculaire , SARS-CoV-2 , Anticorps monoclonaux , Anticorps antiviraux , Immunoglobuline A sécrétoire , Immunoglobuline G , Anticorps neutralisants
6.
Cells ; 11(12)2022 06 19.
Article de Anglais | MEDLINE | ID: mdl-35741098

RÉSUMÉ

TNF and LTα are structurally related cytokines of the TNF superfamily. Their genes are located in close proximity to each other and to the Ltb gene within the TNF/LT locus inside MHC. Unlike Ltb, transcription of Tnf and of Lta is tightly controlled, with the Tnf gene being an immediate early gene that is rapidly induced in response to various inflammatory stimuli. Genes of the TNF/LT locus play a crucial role in lymphoid tissue organogenesis, although some aspects of their specific contribution remain controversial. Here, we present new findings and discuss the distinct contribution of TNF produced by ILC3 cells to Peyer's patch organogenesis.


Sujet(s)
Lymphotoxine alpha , Plaques de Peyer , Animaux , Tissu lymphoïde , Souris , Souris knockout , Organogenèse/génétique , Facteurs de nécrose tumorale/métabolisme
7.
Mucosal Immunol ; 15(4): 698-716, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35383266

RÉSUMÉ

Successful treatment of chronic inflammatory diseases integrates both the cessation of inflammation and the induction of adequate tissue repair processes. Strikingly, targeting a single proinflammatory cytokine, tumor necrosis factor (TNF), induces both processes in a relevant cohort of inflammatory bowel disease (IBD) patients. However, the molecular mechanisms underlying intestinal repair following TNF blockade during IBD remain elusive. Using a novel humanized model of experimental colitis, we demonstrate that TNF interfered with the tissue repair program via induction of a soluble natural antagonist of IL-22 (IL-22Ra2; IL-22BP) in the colon and abrogated IL-22/STAT3-mediated mucosal repair during colitis. Furthermore, membrane-bound TNF expressed by T cells perpetuated colonic inflammation, while soluble TNF produced by epithelial cells (IECs) induced IL-22BP expression in colonic dendritic cells (DCs) and dampened IL-22-driven restitution of colonic epithelial functions. Finally, TNF induced IL-22BP expression in human monocyte-derived DCs and levels of IL22-BP correlated with TNF in sera of IBD patients. Thus, our data can explain how anti-TNF therapy induces mucosal healing by increasing IL-22 availability and implicates new therapeutic opportunities for IBD.


Sujet(s)
Colite , Maladies inflammatoires intestinales , Biodisponibilité , Colite/métabolisme , Côlon/anatomopathologie , Humains , Inflammation/métabolisme , Maladies inflammatoires intestinales/métabolisme , Interleukines , Muqueuse intestinale/métabolisme , Inhibiteurs du facteur de nécrose tumorale , Facteur de nécrose tumorale alpha/métabolisme ,
8.
Z Rheumatol ; 81(8): 635-641, 2022 Oct.
Article de Allemand | MEDLINE | ID: mdl-35380250

RÉSUMÉ

Helper T (Th) cells play a decisive role in triggering and maintaining chronic rheumatic inflammation. Via secretion of proinflammatory cytokines and expression of costimulatory cell surface molecules, Th lymphocytes coordinate the recruitment and activation of effector cells, which are ultimately responsible for the immunopathology and tissue destruction. However, therapeutic approaches aimed at eliminating Th cells were unsuccessful due to their lack of selectivity. At the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ), we are working to improve the understanding of the Th cells involved in chronic inflammatory reactions. Based on this understanding, our aim is to develop novel treatment strategies that selectively target the pathogenic Th lymphocytes causing rheumatic inflammation. The current article summarizes the DRFZ's research activities on this subject.


Sujet(s)
Rhumatismes , Lymphocytes T , Cytokines , Humains , Inflammation/anatomopathologie , Lymphocytes T/anatomopathologie , Lymphocytes T auxiliaires
9.
J Hepatol ; 76(4): 788-799, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-34896404

RÉSUMÉ

BACKGROUND & AIMS: Studies investigating the gut-liver axis have largely focused on bacteria, whereas little is known about commensal fungi. We characterized fecal fungi in patients with non-alcoholic fatty liver disease (NAFLD) and investigated their role in a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis. METHODS: We performed fungal internal transcribed spacer 2 sequencing using fecal samples from 78 patients with NAFLD, 16 controls and 73 patients with alcohol use disorder. Anti-Candida albicans (C. albicans) IgG was measured in blood samples from 17 controls and 79 patients with NAFLD. Songbird, a novel multinominal regression tool, was used to investigate mycobiome changes. Germ-free mice were colonized with feces from patients with non-alcoholic steatohepatitis (NASH), fed a Western diet for 20 weeks and treated with the antifungal amphotericin B. RESULTS: The presence of non-obese NASH or F2-F4 fibrosis was associated with a distinct fecal mycobiome signature. Changes were characterized by an increased log-ratio for Mucor sp./Saccharomyces cerevisiae (S. cerevisiae) in patients with NASH and F2-F4 fibrosis. The C. albicans/S. cerevisiae log-ratio was significantly higher in non-obese patients with NASH when compared with non-obese patients with NAFL or controls. We observed a different fecal mycobiome composition in patients with NAFLD and advanced fibrosis compared to those with alcohol use disorder and advanced fibrosis. Plasma anti-C. albicans IgG was increased in patients with NAFLD and advanced fibrosis. Gnotobiotic mice, colonized with human NASH feces and treated with amphotericin B were protected from Western diet-induced steatohepatitis. CONCLUSIONS: Non-obese patients with NAFLD and more advanced disease have a different fecal mycobiome composition to those with mild disease. Antifungal treatment ameliorates diet-induced steatohepatitis in mice. Intestinal fungi could be an attractive target to attenuate NASH. LAY SUMMARY: Non-alcoholic fatty liver disease is one of the most common chronic liver diseases and is associated with changes in the fecal bacterial microbiome. We show that patients with non-alcoholic fatty liver disease and more severe disease stages have a specific composition of fecal fungi and an increased systemic immune response to Candida albicans. In a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis, we show that treatment with antifungals reduces liver damage.


Sujet(s)
Microbiome gastro-intestinal , Mycobiome , Stéatose hépatique non alcoolique , Animaux , Fèces/microbiologie , Humains , Foie , Souris , Stéatose hépatique non alcoolique/étiologie , Saccharomyces cerevisiae
10.
Nature ; 600(7888): 295-301, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34695836

RÉSUMÉ

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Sujet(s)
COVID-19/immunologie , Cellules tueuses naturelles/immunologie , SARS-CoV-2/immunologie , Facteur de croissance transformant bêta/immunologie , Atlas comme sujet , Régulation de l'expression des gènes/immunologie , Humains , Immunité innée , Grippe humaine/immunologie , Cellules tueuses naturelles/anatomopathologie , RNA-Seq , Analyse sur cellule unique , Facteurs temps , Facteur de croissance transformant bêta/sang , Charge virale/immunologie , Réplication virale/immunologie
11.
Front Physiol ; 12: 699253, 2021.
Article de Anglais | MEDLINE | ID: mdl-34349667

RÉSUMÉ

BACKGROUND: Alcohol-associated liver disease (ALD) is an important cause of morbidity and mortality worldwide. The intestinal microbiota is involved in the development and progression of ALD; however, little is known about commensal fungi therein. METHODS: We studied the dynamic changes of the intestinal fungal microbiome, or mycobiome, in 66 patients with alcohol use disorder (AUD) and after 2 weeks of alcohol abstinence using internal transcribed spacer 2 (ITS2) amplicon sequencing of fecal samples. RESULTS: Patients with AUD had significantly increased abundance of the genera Candida, Debaryomyces, Pichia, Kluyveromyces, and Issatchenkia, and of the species Candida albicans and Candida zeylanoides compared with control subjects. Significantly improved liver health markers caspase-cleaved and intact cytokeratin 18 (CK18-M65) levels and controlled attenuation parameter (CAP) in AUD patients after 2 weeks of alcohol abstinence were associated with significantly lower abundance of the genera Candida, Malassezia, Pichia, Kluyveromyces, Issatchenkia, and the species C. albicans and C. zeylanoides. This was mirrored by significantly higher specific anti-C. albicans immunoglobulin G (IgG) and M (IgM) serum levels in AUD patients in relation to control participants, and significantly decreased anti-C. albicans IgG levels in AUD subjects after 2 weeks of abstinence. The intestinal abundance of the genus Malassezia was significantly higher in AUD subjects with progressive liver disease compared with non-progressive liver disease. CONCLUSION: In conclusion, improved liver health in AUD patients after alcohol abstinence was associated with lower intestinal abundances of Candida and Malassezia, and lower serum anti-C. albicans IgG levels. Intestinal fungi might serve as a therapeutic target to improve the outcome of patients in ALD.

12.
Front Med (Lausanne) ; 8: 644333, 2021.
Article de Anglais | MEDLINE | ID: mdl-34124086

RÉSUMÉ

The intestinal tract is densely populated by microbiota consisting of various commensal microorganisms that are instrumental for the healthy state of the living organism. Such commensals generate various molecules that can be recognized by the Toll-like receptors of the immune system leading to the inflammation marked by strong upregulation of various proinflammatory cytokines, such as TNF, IL-6, and IL-1ß. To prevent excessive inflammation, a single layer of constantly renewing, highly proliferating epithelial cells (IEC) provides proper segregation of such microorganisms from the body cavities. There are various triggers which facilitate the disturbance of the epithelial barrier which often leads to inflammation. However, the nature and duration of the stress may determine the state of the epithelial cells and their responses to cytokines. Here we discuss the role of the microbiota-TLR-cytokine axis in the maintenance of the epithelial tissue integrity. In particular, we highlight discrepancies in the function of TLR and cytokines in IEC barrier during acute or chronic inflammation and we suggest that intervention strategies should be applied based on the type of inflammation.

13.
iScience ; 24(4): 102331, 2021 Apr 23.
Article de Anglais | MEDLINE | ID: mdl-33889824

RÉSUMÉ

In order to ascertain the significance of transmembrane tumor necrosis factor (tmTNF) reverse signaling in vivo, we generated a triple transgenic mouse model (3TG, TNFR1-/-, TNFR2-/-, and tmTNFKI/KI) in which all canonical tumor necrosis factor (TNF) signaling was abolished. In bone-marrow-derived macrophages harvested from these mice, various anti-TNF biologics induced the expression of genes characteristic of alternative macrophages and also inhibited the expression of pro-inflammatory cytokines mainly through the upregulation of arginase-1. Injections of TNF inhibitors during arthritis increased pro-resolutive markers in bone marrow precursors and joint cells leading to a decrease in arthritis score. These results demonstrate that the binding of anti-TNF biologics to tmTNF results in decreased arthritis severity. Collectively, our data provide evidence for the significance of tmTNF reverse signaling in the modulation of arthritis. They suggest a complementary interpretation of anti-TNF biologics effects in the treatment of inflammatory diseases and pave the way to studies focused on new arginase-1-dependent therapeutic targets.

14.
Nat Commun ; 12(1): 1961, 2021 03 30.
Article de Anglais | MEDLINE | ID: mdl-33785765

RÉSUMÉ

The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-ß, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-ß. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-ß, and is distracted from itself.


Sujet(s)
Anticorps antiviraux/immunologie , COVID-19/immunologie , SARS-CoV-2/immunologie , Facteur de croissance transformant bêta/immunologie , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , COVID-19/virologie , Femelle , Humains , Immunoglobuline A/immunologie , Immunoglobuline G/immunologie , Interleukines/immunologie , Mâle , Adulte d'âge moyen , Plasmocytes/immunologie , SARS-CoV-2/génétique , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/immunologie
15.
Clin Gastroenterol Hepatol ; 19(4): 721-731.e1, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-32272247

RÉSUMÉ

BACKGROUND & AIMS: A substantial proportion patients with inflammatory bowel disease (IBD) have a primary non-response to infliximab; markers are needed to identify patients most likely to respond to treatment. We investigated whether production of tumor necrosis factor (TNF) by peripheral blood mononuclear cells (PBMCs) can be used as a marker to predict response. METHODS: We performed a prospective study of 41 adults with IBD (mean age, 38 years; 21 male; 21 with Crohn's disease and 20 with ulcerative colitis) not treated with a biologic agent within the past 6 months; patients were given their first infusion of infliximab at a hospital or clinic in Berlin, Germany. We collected data on clinical scores, levels of C-reactive protein, and ultrasound results (Limberg scores) at baseline (before the first infusion) and after 6 weeks (3rd infliximab infusion). PMBCs were obtained from patients at baseline and 10 healthy individuals (controls) and incubated with lipopolysaccharide. We measured production of cytokines (TNF, interleukin 1 [IL1], IL6, IL8, IL10, IL12p70, and IL22) by ELISA and performed cytometric bead array and flow cytometry analyses. The primary endpoint was clinical response (decrease in Harvey Bradshaw Index scores of 2 or more or decrease in partial Mayo scores of 3 or more at week 6) in patients with PBMCs that produced high vs low levels of TNF. RESULTS: Responders had a shorter median disease duration (P = .018) and higher median Limberg score (P = .021), than nonresponders. Baseline PBMCs from responders produced significantly more TNF (P = .049) and IL6 (P = .028) than from nonresponders; a level of 500 pg/ml TNF identified responders with 82% sensitivity and 78% specificity. In patients with Crohn's disease, this cutoff value (500 pg/ml TNF) identified responders with 100% sensitivity and 82% specificity; TNF levels above this level were independently associated with response to infliximab in multivariate analysis (odds ratio, 16.2; 95% CI, 1.8-148.7; P = .014). The percentage of TNF-positive cells was higher among CD14+ monocytes than lymphocytes after stimulation. CONCLUSIONS: Production of a high level of TNF by PBMCs (specifically CD14+ cells) from patients with IBD can identify those most likely to have a clinical response to infliximab therapy. In patients with Crohn's disease, a cutoff value of 500 pg/ml TNF identified responders with 100% sensitivity and 82% specificity.


Sujet(s)
Maladies inflammatoires intestinales , Agranulocytes , Adulte , Humains , Maladies inflammatoires intestinales/traitement médicamenteux , Infliximab/usage thérapeutique , Mâle , Études prospectives , Facteurs de nécrose tumorale
16.
Immunity ; 53(5): 1015-1032.e8, 2020 11 17.
Article de Anglais | MEDLINE | ID: mdl-33207209

RÉSUMÉ

Solitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c+ cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c+ cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs. CIA-DCs required programming by CP- and ILF-resident CCR6+ ILC3 via lymphotoxin-ß receptor signaling in cDCs. CIA-DCs differentially expressed genes associated with immunoregulation and were the major cellular source of IL-22 binding protein (IL-22BP) at steady state. Mice lacking CIA-DC-derived IL-22BP exhibited diminished expression of epithelial lipid transporters, reduced lipid resorption, and changes in body fat homeostasis. Our findings provide insight into the design principles of an immunoregulatory checkpoint controlling nutrient absorption.


Sujet(s)
Cellules dendritiques/immunologie , Cellules dendritiques/métabolisme , Immunité innée , Sous-populations de lymphocytes/immunologie , Sous-populations de lymphocytes/métabolisme , Plaques de Peyer/cytologie , Plaques de Peyer/immunologie , Récepteurs aux interleukines/biosynthèse , Animaux , Marqueurs biologiques , Expression des gènes , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes , Immunophénotypage , Muqueuse intestinale/immunologie , Muqueuse intestinale/métabolisme , Métabolisme lipidique , Souris , Souris transgéniques , Petit ARN cytoplasmique/génétique , Récepteurs aux interleukines/génétique , Transduction du signal
17.
Ann Rheum Dis ; 79(11): 1453-1459, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-32796044

RÉSUMÉ

OBJECTIVES: Neutralisation of tumour necrosis factor (TNF) is widely used as a therapy for rheumatoid arthritis (RA). However, this therapy is only effective in less than a half of patients and is associated with several side effects. We hypothesised that TNF may possess non-redundant protective and immunomodulatory functions in vivo that cannot be blocked without a cost. The present work aimed to identify cellular sources of protective and pathogenic TNF, and its molecular forms during autoimmune arthritis. METHODS: Mice lacking TNF expression by distinct cell types, such as myeloid cells and T or B lymphocytes, were subjected to collagen-induced arthritis (CIA) and collagen antibody-induced arthritis. Mice lacking soluble TNF production were also employed. The severity and incidence of the disease, as well as humoral and cellular responses were assessed. RESULTS: Myeloid cell-derived TNF contributes to both induction and pathogenesis of autoimmune arthritis. Conversely, T cell-derived TNF is protective during the induction phase of arthritis via limiting of interleukin-12 production by dendritic cells and by subsequent control of autoreactive memory T cell development, but is dispensable during the effector phase of arthritis. B cell-derived TNF mediates severity of CIA via control of pathogenic autoantibody production. CONCLUSIONS: Distinct TNF-producing cell types may modulate disease development through different mechanisms, suggesting that in arthritis TNF ablation from restricted cellular sources, such as myeloid cells, while preserving protective TNF functions from other cell types may be superior to pan-anti-TNF therapy.


Sujet(s)
Arthrite expérimentale/immunologie , Cellules myéloïdes/immunologie , Facteur de nécrose tumorale alpha/immunologie , Animaux , Arthrite expérimentale/métabolisme , Arthrite expérimentale/anatomopathologie , Lymphocytes B/immunologie , Lymphocytes B/métabolisme , Souris , Souris knockout , Cellules myéloïdes/métabolisme , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Facteur de nécrose tumorale alpha/métabolisme
18.
Gastroenterology ; 159(4): 1417-1430.e3, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32585307

RÉSUMÉ

BACKGROUND & AIMS: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS: We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS: Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS: Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.


Sujet(s)
Tumeurs colorectales/métabolisme , Lymphotoxine alpha/métabolisme , Récepteurs aux interleukines/métabolisme , Sujet âgé , Animaux , Tumeurs colorectales/mortalité , Tumeurs colorectales/anatomopathologie , Modèles animaux de maladie humaine , Femelle , Humains , Mâle , Souris , ARN messager/métabolisme , Récepteurs aux interleukines/génétique , Taux de survie
20.
Eur J Immunol ; 50(6): 783-794, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32065660

RÉSUMÉ

In humans and mice, mucosal immune responses are dominated by IgA antibodies and the cytokine TGF-ß, suppressing unwanted immune reactions but also targeting Ig class switching to IgA. It had been suggested that eosinophils promote the generation and maintenance of mucosal IgA-expressing plasma cells. Here, we demonstrate that not eosinophils, but specific bacteria determine mucosal IgA production. Co-housing of eosinophil-deficient mice with mice having high intestinal IgA levels, as well as the intentional microbiota transfer induces TGF-ß expression in intestinal T follicular helper cells, thereby promoting IgA class switching in Peyer's patches, enhancing IgA+ plasma cell numbers in the small intestinal lamina propria and levels of mucosal IgA. We show that bacteria highly enriched for the genus Anaeroplasma are sufficient to induce these changes and enhance IgA levels when adoptively transferred. Thus, specific members of the intestinal microbiota and not the microbiota as such regulate gut homeostasis, by promoting the expression of immune-regulatory TGF-ß and of mucosal IgA.


Sujet(s)
Microbiome gastro-intestinal/immunologie , Immunité muqueuse , Immunoglobuline A/immunologie , Muqueuse intestinale , Plaques de Peyer , Lymphocytes T auxiliaires/immunologie , Animaux , Muqueuse intestinale/immunologie , Muqueuse intestinale/microbiologie , Souris , Souris de lignée BALB C , Souris knockout , Plaques de Peyer/immunologie , Plaques de Peyer/microbiologie , Tenericutes/immunologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...