Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-38473823

RÉSUMÉ

The work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained. The structure and composition of the synthesized polymers were confirmed based on NMR and FTIR studies. The cytotoxicity tests performed on human fibroblasts and keratinocytes showed that the polymers obtained with spermine and norspermidine were strongly cytotoxic, but only in high concentrations. All the other examined polymers did not show cytotoxicity even at concentrations of 2000 µg/mL. Simultaneously, the antibacterial activity of the obtained polyamides was confirmed. These polymers are particularly active against E. Coli, and virtually all the polymers obtained demonstrated a strong inhibitory effect on the growth of cells of this strain. Antimicrobial activity of the tested polymer was found against strains like Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The broadest spectrum of bactericidal action was demonstrated by polyamidoamines obtained from spermine, which contains two amino groups in the repeating unit of the chain. The obtained polymers can be used as a material for forming drug carriers and other biologically active compounds in the form of micro- and nanoparticles, especially as a component of bactericidal creams and ointments used in dermatology or cosmetology.


Sujet(s)
Escherichia coli , Spermidine/analogues et dérivés , Spermine , Humains , Spermine/pharmacologie , Polyamines/pharmacologie , Antibactériens/pharmacologie , Polymères/pharmacologie
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35318, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-37650461

RÉSUMÉ

The interest in combining chemosensitizers with cytostatics in cancer therapy is growing, which causes also a need to develop their delivery systems. Example of the combination with beneficial therapeutic effects is docetaxel (Dtx) and resveratrol (Res). Although poly(lactide)-co-poly(ethylene glycol) (PLA-PEG) micelles have been considered as one of the most promising platforms for drug delivery, their properties may depend on the stereoisomeric form of hydrophobic block. Therefore, the aim of this study was evaluation of the effect of PLA block on co-encapsulation and release rate of Dtx and Res, which has not been studied so far. This article presents a comparison of single- (Dtx or Res) and dual-drug (Dtx and Res) loaded micelles obtained from poly(l,l-lactide)-co-poly(ethylene glycol) (PLLA-PEG) and poly(d,l-lactide)-co-poly(ethylene glycol) (PDLLA-PEG). The analyzes of the micelles have been conducted including morphology, drug(s) encapsulation efficiency, intermolecular interactions, in vitro drug release, and cytotoxicity. Differences in drug loading ability and release profile have been observed between Res and Dtx but also depending on the polymer and number of drugs in micelles (single vs. dual loaded). The PLLA-PEG micelles have a significantly higher Dtx encapsulation capacity than PDLLA-PEG micelles. The highest cytotoxicity was shown for Dtx and Res dual-loaded micelles, regardless of the polymer. The findings may be used for selection of PLA-based drug delivery systems containing Dtx and Res.


Sujet(s)
Antinéoplasiques , Lactates , Micelles , Antinéoplasiques/composition chimique , Lignée cellulaire tumorale , Docetaxel/pharmacologie , Vecteurs de médicaments/pharmacologie , Vecteurs de médicaments/composition chimique , Polyesters/composition chimique , Polyéthylène glycols/composition chimique , Polymères/composition chimique , Resvératrol/pharmacologie
3.
Biomedicines ; 11(2)2023 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-36830880

RÉSUMÉ

Ischemic heart disease (IHD) is one of the main focuses in today's healthcare due to its implications and complications, and it is predicted to be increasing in prevalence due to the ageing population. Although the conventional pharmacological and interventional methods for the treatment of IHD presents with success in the clinical setting, the long-term complications of cardiac insufficiency are on a continual incline as a result of post-infarction remodeling of the cardiac tissue. The migration and involvement of stem cells to the cardiac muscle, followed by differentiation into cardiac myocytes, has been proven to be the natural process, though at a slow rate. SDF-1α is a novel candidate to mobilize stem cells homing to the ischemic heart. Endogenous SDF-1α levels are elevated after myocardial infarction, but their presence gradually decreases after approximately seven days. Additional administration of SDF-1α-releasing microspheres could be a tool for the extension of the time the stem cells are in the cardiac tissue after myocardial infarction. This, in turn, could constitute a novel therapy for more efficient regeneration of the heart muscle after injury. Through this practical study, it has been shown that the controlled release of SDF-1α from biodegradable microspheres into the pericardial sac fourteen days after myocardial infarction increases the concentration of exogenous SDF-1α, which persists in the tissue much longer than the level of endogenous SDF-1α. In addition, administration of SDF-1α-releasing microspheres increased the expression of the factors potentially involved in the involvement and retention of myocardial stem cells, which constitutes vascular endothelial growth factor A (VEGFA), stem cell factor (SCF), and vascular cell adhesion molecules (VCAMs) at the site of damaged tissue. This exhibits the possibility of combating the basic limitations of cell therapy, including ineffective stem cell implantation and the ability to induce the migration of endogenous stem cells to the ischemic cardiac tissue and promote heart repair.

4.
Bioengineering (Basel) ; 9(12)2022 Dec 02.
Article de Anglais | MEDLINE | ID: mdl-36550960

RÉSUMÉ

Stem cell treatment is a promising method of therapy for the group of patients whose conventional options for treatment have been limited or rejected. Stem cells have the potential to repair, replace, restore and regenerate cells. Moreover, their proliferation level is high. Owing to these features, they can be used in the treatment of numerous diseases, such as cancer, lung diseases or ischemic heart diseases. In recent years, stem cell therapy has greatly developed, shedding light on stromal-derived factor 1α (SDF-1α). SDF-1α is a mobilizing chemokine for application of endogenous stem cells to injury sites. Unfortunately, SDF-1α presented short-term results in stem cell treatment trials. Considering the tremendous benefits of this therapy, we developed biodegradable polymeric microspheres for the release of SDF-1α in a controlled and long-lasting manner. The microspheres were designed from poly(L-lactide/glycolide/trimethylene carbonate) (PLA/GA/TMC). The effect of controlled release of SDF-1α from microspheres was investigated on the migration level of bone marrow Mesenchymal Stromal Cells (bmMSCs) derived from a pig. The study showed that SDF-1α, released from the microspheres, is more efficient at attracting bmMSCs than SDF-1α alone. This may enable the controlled delivery of selected and labeled MSCs to the destination in the future.

5.
Pharmaceutics ; 14(12)2022 Dec 17.
Article de Anglais | MEDLINE | ID: mdl-36559328

RÉSUMÉ

Prostate cancer is the second most common cancer in males. In the case of locally advanced prostate cancer radical prostatectomy is one of the first-line therapy. However, recurrence after resection of the tumor can appear. Drug-eluting bioresorbable implants acting locally in the area of the tumor or the resection margins, that reduce the risk of recurrence would be advantageous. Electrospinning offers many benefits in terms of local delivery so fiber-forming polyesters and polyestercarbonates which are suitable to be drug-loaded were used in the study to obtain CTX or DTX-loaded electrospun patches for local delivery. After a fast verification step, patches based on the blend of poly(glycolide-ε-caprolactone) and poly(lactide-glycolide) as well as patches obtained with poly(lactide-glycolide- ε-caprolactone) were chosen for long-term study. After three months, 60% of the drug was released from (PGCL/PLGA) + CTX and it was selected for final, anticancer activity analysis with the use of PC-3 and DU145 cells to establish its therapeutic potential. CTX-loaded patches reduced cell growth to 53% and 31% respectively, as compared to drug-free patches. Extracts from drug-free patches showed excellent biocompatibility with the PC-3 cell line. Cabazitaxel-loaded bioresorbable patches are a promising drug delivery system for prostate cancer therapy.

6.
Int J Pharm ; 625: 122113, 2022 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-35973592

RÉSUMÉ

Dual-jet electrospinning was employed to produce two-component, partially degradable drug releasing nonwovens with interlacing of poly(D,L-lactide-co-glycolide) (PDLGA) and different poly(carbonate urethanes) (PCUs). Diclofenac sodium and sirolimus were released simultaneously from the copolyester carrier. The research focused on determining of release profiles of drugs, depending on the hydrophilicity of introduced PCU nanofibers. The influence of drugs incorporation on the hydrolytic degradation of the PDLGA and mechanical properties of nonwovens was also studied. Evaluation for interaction with cells in vitro was investigated on a fibroblast cell line in cytotoxicity and surface adhesion tests. Significant changes in drugs release rate, depending on the applied PCU were observed. It was also noticed, that hydrophilicity of drugs significantly influenced the hydrolytic degradation mechanism and surface erosion of the PDLGA, as well as the tensile strength of nonwovens. Tests carried out on cells in an in vitro experiment showed that introduction of sirolimus caused a slight reduction in the viability of fibroblasts as well as a strong limitation in their capability to colonize the surface of fibers. Due to improvement of mechanical strength and the ability to controlled drugs release, the obtained material may be considered as prospect surgical mesh implant in the treatment of hernia.


Sujet(s)
Anti-infectieux/administration et posologie , Anti-inflammatoires non stéroïdiens/administration et posologie , Diclofenac/administration et posologie , Nanofibres/administration et posologie , Sirolimus/administration et posologie , Filet chirurgical , Préparations à action retardée , Matériaux dentaires , Structures d'échafaudage tissulaires
7.
J Mech Behav Biomed Mater ; 126: 105050, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-34959096

RÉSUMÉ

A dual-jet electrospinning was used to mix a different hydrophilicity poly(carbonate urethanes) (PCUs) nanofibers with a biodegradable poly(D,L-lactide-co-glycolide) (PDLGA) copolyester microfibers. As a result, PDLGA/PCU partially degradable nonwovens consisting of an interlaced of both components fibers were obtained. In order to examine the hydrolytic degradation process of polyester fraction, as well as changes that occurred in the mechanical properties of the whole nonwovens, gel permeation chromatography, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry and scanning electron microscopy as well as static tensile test were performed. Obtained results showed that for the introduction of more hydrophobic PCU nanofibers (ChronoSil), the process of copolyester chain scission slowed down and the erosion mechanism proceeded in bulk. Unexpectedly, even greater deceleration of PDLGA fibers degradation was observed in case of more hydrophilic PCU (HydroThane), and erosion mechanism changed to surface. Enhancement the affinity of the whole nonwoven to the water, manifested by strong water uptake, facilitated the diffusion processes of both: water and acid degradation by-products, which limited autocatalysis reactions of the hydrolysis of ester bonds. On the other hand, strength tests showed the synergy in the mechanical characteristics of both components. Presented method allows influencing the mechanism and rate of polyester degradation without changing its chemical composition and physical properties, affecting only the physical interactions between the nonwoven and the degradation environment, and thus, on diffusion processes. Obtained partially degradable materials possessed also time prolonged functional properties, compared to the copolyester-only nonwoven itself, thus could be considered as promising for biomedical applications e.g. in drug release systems, implants or surgical meshes for supporting soft tissues.


Sujet(s)
Nanofibres , Polyesters , Matériaux biocompatibles , Calorimétrie différentielle à balayage , Hydrolyse , Interactions hydrophobes et hydrophiles
8.
Pharmaceutics ; 13(11)2021 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-34834296

RÉSUMÉ

Co-delivery of epothilone B (EpoB) and rapamycin (Rap) increases cytotoxicity against various kinds of cancers. However, the current challenge is to develop a drug delivery system (DDS) for the simultaneous delivery and release of these two drugs. Additionally, it is important to understand the release mechanism, as well as the factors that affect drug release, in order to tailor this process. The aim of this study was to analyze PLA-PEG micelles along with several types of microspheres obtained from PLA or a mixture of PLA and PLA-PEG as carriers of EpoB and Rap for their drug release properties and cytotoxicity against breast cancer cells. The study showed that the release process of EpoB and Rap from a PLA-based injectable delivery systems depends on the type of DDS, morphology, and polymeric composition (PLA to PLA-PEG ratio). These factors also affect the biological activity of the DDS, because the cytotoxic effect of the drugs against MDA-MB-231 cells depends on the release rate. The release process from all kinds of DDS was well-characterized by the Peppas-Sahlin model and was mainly controlled by Fickian diffusion. The conducted analysis allowed also for the selection of PLA 50/PLA-PEG 50 microspheres and PLA-PEG micelles as a promising co-delivery system of EpoB and Rap.

9.
Pharmaceutics ; 13(3)2021 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-33802531

RÉSUMÉ

Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.

10.
Int J Pharm ; 602: 120596, 2021 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-33857588

RÉSUMÉ

The local administration of different drugs in anticancer therapy continue to attract attention. Thus, the idea of local delivery of cytostatics from nonwoven-structured polyesters seems to be highly desirable. It could reduce systemic drug levels and provide high local concentration of the chemotherapeutics at the tumor site and contribute to enhance the efficiency of the anticancer therapy. Poly(glycolide-ɛ-caprolactone) (PGCL) and poly(D,L-lactide-co-glycolide) (PLGA) synthesized with zirconium-based initiator have been used to prepare electrospun, drug-eluting patches since they possess very good fiber-forming ability. Well-known chemotherapeutic drug-paclitaxel has been loaded into fibrous structure as a model anticancer agent in order to obtain drug delivery systems for local administration. The drug dose in obtained nonwovens might be regulated by the thickness and total area of the implanted patches. Electrospinning of PGCL/PLGA blend allowed to obtain soft and flexible implantable materials. Flexibility has been important factor since it ensures convenient use when covering a tumor or filling a resection cavity. The effectiveness of designed nonwovens presented in the study has been tested in vivo on mouse model of breast cancer. The growth of the tumors was slowed down during in vivo study in comparison with drug-free nonwovens- The volume of the tumor was 40% lower. Drug-loaded electrospun systems implanted locally to the tumor site was further combined with brachytherapy which improved the effectiveness of the therapy in about 18%. Detailed analysis of the nonwovens before and during degradation process has been performed by means of Scanning Electron Microscopy, Differential Scanning Calorimetry, Nuclear Magnetic Resonance, Gel Permeation Chromatography, X-ray Diffraction. The molar mass changes of the nonwoven were quite rapid contrary to changes of comonomer unit content, thermal properties and morphology of the fiber.


Sujet(s)
Curiethérapie , Paclitaxel , Animaux , Acide lactique , Souris , Polyesters , Acide polyglycolique , Copolymère d'acide poly(lactique-co-glycolique)
11.
J Biomed Mater Res A ; 109(9): 1693-1700, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-33719211

RÉSUMÉ

The new therapeutic solutions for breast cancer treatment are needed, for example, combined therapy consisted of several drugs that characterize different mechanisms of action and modern drug delivery systems. Therefore, we used combination of epothilone B (EpoB) and rapamycin (Rap) to analyze the cytotoxic effect against breast cancer cells (MCF-7; MDA-MB-231). Also, the effect of drugs co-delivered in bioresorbable micelles functionalized with biotin (PLA-PEG-BIO; poly(lactide)-co-poly(ethylene glycol)-biotin) was studied. The comparison of effects of the mixture of free drugs and the micelles co-loaded with EpoB and Rap revealed a significant decrease in the cell metabolic activity and survival. Moreover, the dual drug-loaded PLA-PEG-BIO micelles enhanced the cytotoxicity of EpoB and Rap against the tested cells as compared with the free drugs. The blank PLA-PEG-BIO micelles did not affect the tested cells. We expect that mixture of EpoB and Rap may be promising in breast cancer treatment and PLA-PEG-BIO micelles as carrier of these two drugs can be applicable for successful targeted delivery.


Sujet(s)
Matériaux biocompatibles/composition chimique , Tumeurs du sein/traitement médicamenteux , Vecteurs de médicaments/composition chimique , Épothilones/usage thérapeutique , Nanoparticules/composition chimique , Sirolimus/usage thérapeutique , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Mort cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Survie cellulaire/effets des médicaments et des substances chimiques , Systèmes de délivrance de médicaments , Épothilones/pharmacologie , Femelle , Humains , Micelles , Nanoparticules/ultrastructure , Spectroscopie par résonance magnétique du proton , Sirolimus/pharmacologie
12.
Eur J Pharm Biopharm ; 161: 29-36, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33567313

RÉSUMÉ

Glioblastoma multiforme is the most aggressive and lethal form of brain tumour due to the high degree of cancer cells infiltration into surrounding brain tissue. No form of monotherapy can guarantee satisfactory patient outcomes and is only of palliative importance. To find a potential option of glioblastoma treatment the bioresorbable, layer nonwoven mats for controlled temozolomide and nimorazole release were obtained by classical and coaxial electrospinning. Optimization of fibre structure that enables delayed and controlled drug release was performed. The studied bioresorbable polymers were poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-co-glycolide-co-trimethylene carbonate). The physicochemical properties of polymers were determined as well as drug release profiles of nonwoven mats. A combination of coaxial electrospinning and electrospray technique provided three-phased release profiles of temozolomide and nimorazole: the slow release of very low drug doses followed by accelerated release and saturation phase. Results form the basis for further investigation since both studied polymers possess a great potential as nimorazole and temozolomide delivery systems in the form of layered nonwoven implants.


Sujet(s)
Implant résorbable , Vecteurs de médicaments/composition chimique , Nimorazole/administration et posologie , Témozolomide/administration et posologie , Antinéoplasiques alcoylants/administration et posologie , Antinéoplasiques alcoylants/composition chimique , Tumeurs du cerveau/traitement médicamenteux , Chimie pharmaceutique , Préparations à action retardée , Dioxanes/composition chimique , Libération de médicament , Glioblastome/traitement médicamenteux , Nimorazole/composition chimique , Polyesters/composition chimique , Copolymère d'acide poly(lactique-co-glycolique)/composition chimique , Polymères/composition chimique , Radiosensibilisants/administration et posologie , Radiosensibilisants/composition chimique , Témozolomide/composition chimique
13.
Catheter Cardiovasc Interv ; 98(5): 914-922, 2021 11 01.
Article de Anglais | MEDLINE | ID: mdl-32946190

RÉSUMÉ

OBJECTIVE: This study aimed to evaluate the pharmacokinetic profile and tissue effects of everolimus delivered into arterial wall using biodegradable nanospheres. BACKGROUND: Delivery of everolimus into the arterial wall is challenging due to its low-lipophilic profile. METHODS: A pharmacokinetic study included 28 porcine coronary arterial segments initially injured with balloon angioplasty followed by the local delivery of everolimus encapsulated in nanospheres (EEN) via injection through a microporous delivery catheter. The animals were sacrificed at 1 hour, 1,7,28, and 90-day follow-up. In the tissue effects study 16 coronary bare metal stent (BMS) were implanted following EEN delivery, 15 BMS following nanospheres delivery without the drug (reference group) and 16 implanted BMS served as a control. Angiographic and histology follow-up was scheduled at 28 and 90-day. RESULTS: The study showed high-everolimus concentrations in arterial tissue early after nanoparticles delivery followed by its gradual decrease to 1.15 ± 0.40 ng/mg at 90 days. Histology analysis showed favorable biocompatibility and healing profile with comparable area stenosis between groups at both time-points. CONCLUSIONS: The present study demonstrates for the first time the safety, biocompatibility, and long-term retention of everolimus in arterial tissue after single local delivery of biodegradable nanospheres.


Sujet(s)
Resténose coronaire , Endoprothèses à élution de substances , Nanosphères , Animaux , Coronarographie , Évérolimus , Conception de prothèse , Sirolimus , Endoprothèses , Suidae , Résultat thérapeutique
14.
Materials (Basel) ; 13(18)2020 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-32961952

RÉSUMÉ

This article reports the studies on bioactive (co)oligoesters towards their use as controlled delivery systems of p-anisic acid. The objects of the study were oligo[3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate], (p-AA-CH2-HP)n oligoester, and oligo[(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate)-co-(3-hydroxybutyrate)] [(p-AA-CH2-HP)x-co-(HB)y (co)oligoesters containing p-anisic acid moiety (p-AA, as the bioactive end and side groups) connected to the polymer backbone through the susceptible to hydrolysis ester bonds. A thorough insight into the hydrolysis process of the bioactive (co)oligoesters studied has allowed us to determine the release profile of p-AA as well as to identify polymer carrier degradation products. The p-AA release profiles determined on the basis of high-performance liquid chromatography (HPLC) measurements showed that the release of the bioactive compound from the developed (co)oligoester systems was regular and no burst effect occurred. Biological studies demonstrated that studied (homo)- and (co)oligoesters were well tolerated by HaCaT cells because none of them showed notable cytotoxicity. They promoted keratinocyte growth at moderate concentrations. Bioactive (co)oligoesters containing p-anisic acid moiety had somewhat decreased cell proliferation at the highest concentration (100 µg/mL). The important practical inference of the current study is that the (co)oligoesters developed have a relatively large load of the biologically active substance (p-AA) per polymer macromolecule, which unlocks their potential application in the cosmetic industry.

15.
J Biomed Mater Res A ; 108(4): 1006-1015, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-31925896

RÉSUMÉ

Various types of biodegradable polymers containing lactide, glycolide, caprolactone, and trimethylene carbonate units have been used to obtain ciprofloxacin (CFX)-enriched coatings developed on the Ti6Al7Nb alloy, intended for short-term therapy. In the first step, the surface of the Ti6Al7Nb alloy was modified, mostly according to sandblasting and anodic oxidation to obtain the TiO2 layer. Anodizing can be an effective method for preparing TiO2 coatings with osteoconductive properties. The polymer containing CFX molecules was deposited on the modified alloy, and Polymer + CFX/TiO 2 /Ti6Al7Nb systems were developed. CFX-enriched coatings adhered well to the surface of the previously modified alloy. Polymer layers maintain the topography of the alloy due to the development of the surface during the sandblasting method. As polymers intended for the study possess degradation ability, they are capable of releasing the incorporated drug. Antibacterial activity of CFX-enriched coatings was examined to verify the functionality of designed Polymer + CFX/TiO 2 /Ti6Al7Nb systems, and the bactericidal effect was confirmed for all cases. The presented study is an extension of previous, initial research and creates an overview of polyester or polyestercarbonate CFX-eluting coatings.


Sujet(s)
Antibactériens/usage thérapeutique , Ciprofloxacine/usage thérapeutique , Matériaux revêtus, biocompatibles/composition chimique , Prothèses et implants , Infections dues aux prothèses/traitement médicamenteux , Infections dues aux prothèses/prévention et contrôle , Titane/composition chimique , Antibactériens/pharmacologie , Ciprofloxacine/pharmacologie , Libération de médicament , Escherichia coli/effets des médicaments et des substances chimiques , Spectroscopie par résonance magnétique , Tests de sensibilité microbienne , Microscopie à force atomique , Polymères/composition chimique
16.
Pharmaceutics ; 11(4)2019 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-30959904

RÉSUMÉ

To find better strategies to enhance the cytotoxic effect of paclitaxel (PTX) and lapatinib (LAP) against breast cancer cells, we analyzed the efficacy of a novel delivery system containing polylactide-co-poly(ethylene glycol) (PLA-PEG) filomicelles of over 100 nm in length and spherical micelles of approximately 20 nm in diameter. The ¹H NMR measurements confirmed the incorporation of PTX and LAP into micelles. Analysis of the drug release mechanism revealed the diffusion-controlled release of LAP and anomalous transport of PTX. Drug content analysis in lyophilized micelles and micellar solution showed their good storage stability for at least 6 weeks. Blank micelles, LAP-loaded micelles and free LAP did not affect MCF-7 breast cancer cell proliferation, suggesting that the cytotoxicity of PTX-, PTX/LAP-loaded micelles, and the binary mixture of free PTX and LAP was solely caused by PTX. PTX/LAP-loaded micelles showed greater toxicity compared to the binary mixture of PTX and LAP after 48 h and 72 h. Only free PTX alone induced P-gp activity. This study showed the feasibility of using a LAP and PTX combination to overcome MDR in MCF-7 cells, particularly when co-loaded into micelles. We suggest that PTX/LAP micelles can be applicable not only for the therapy of HER-2-positive, but also HER-2-negative breast cancers.

17.
Article de Anglais | MEDLINE | ID: mdl-27604986

RÉSUMÉ

Hypocalcemia is mainly the consequence of hypoalbuminemia, advanced renal impairment, cirrhosis, malnutrition, or sepsis. The most common ECG manifestation of hypocalcemia is QT prolongation as a result of ST segment lengthening. Very occasionally, hypocalcemia can manifest with ST segment elevation forcing the differential diagnosis with ST elevation MI. We described a case of severe hypocalcemia manifesting in electrocardiogram with a J point elevation, absent of ST segment and with associated short QT interval mimicking acute myocardial infarction.


Sujet(s)
Électrocardiographie/méthodes , Système de conduction du coeur/physiopathologie , Hypocalcémie/diagnostic , Infarctus du myocarde , Maladie aigüe , Diagnostic différentiel , Issue fatale , Humains , Mâle , Adulte d'âge moyen
18.
Int J Pharm ; 510(1): 365-74, 2016 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-27346726

RÉSUMÉ

This study aimed to analyze the influence of drug-drug and drug-polymer interactions on drug loading and release properties of multidrug micelles. Three hydrophobic drugs-paclitaxel (Ptx), 17-AAG and rapamycin (Rap) were incorporated in poly(l-lactide)-poly(ethylene glycol) (PLA-PEG) filomicelles. Double loaded micelles containing Ptx and 17-AAG were used for the sake of comparison. (1)H NMR confirmed the effective incorporation of the various drugs in micelles, and HPLC allowed to determine the drug loading contents. FTIR was used to evaluate interactions between particular drugs and between drugs and copolymer. Ptx and 17-AAG present similar loading efficiencies in double loaded micelles probably due to interactions of drugs with each other and also with the copolymer. In contrast, unequal drug loading properties are observed for triple loaded micelles. Rapamycin shows very weak interactions with the copolymer, and displays the lowest loading efficiency. In vitro release of drugs from micelles was realized in pH 7.4 phosphate buffered saline at 37°C, and monitored by HPLC. Similar release profiles are observed for the three drugs: a strong burst followed by slower release. Nevertheless, Ptx release from micelles is significantly slower as compared to 17-AAG and Rap, probably due to interactions of NH and OH groups of Ptx with the carbonyl group of PLA. In vitro cytotoxicity of Ptx/17-AAG/Rap loaded micelles and a mixture of free drugs was determined. Drug loaded micelles exhibit advantageous effect of prolonged drug release and cytotoxic activity against Caco-2 cells, which makes them a promising solution for simultaneous drug delivery to solid tumors. Therefore, understanding of interactions within multidrug micelles should be a valuable approach for the development of concurrent delivery systems of anticancer drugs with tailored properties.


Sujet(s)
Antinéoplasiques/métabolisme , Systèmes de délivrance de médicaments/méthodes , Libération de médicament , Micelles , Polyéthylène glycols/métabolisme , Polymères/métabolisme , Antinéoplasiques/administration et posologie , Cellules Caco-2 , Prolifération cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/physiologie , Interactions médicamenteuses/physiologie , Libération de médicament/effets des médicaments et des substances chimiques , Libération de médicament/physiologie , Humains , Polyéthylène glycols/administration et posologie , Polymères/administration et posologie
19.
Int J Pharm ; 465(1-2): 291-8, 2014 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-24491529

RÉSUMÉ

The growing interest in the bioresorbable polymers contributed to developing a number of commercially available controlled drug delivery systems. Due to a variety of drugs and their physicochemical properties, there is a necessity of choosing an appropriate drug carrier. Terpolymer with shape memory properties was used to obtain double layer matrices composed of drug free matrix and paclitaxel containing layer. The in vitro degradation and drug release study were conducted at 37 °C in PBS (pH 7.4). The investigated materials were characterized by GPC (gel permeation chromatography) and DSC (differential scanning calorimetry). HPLC (high-pressure liquid chromatography) was applied to analyze the amount of released paclitaxel. The main purpose of this work was to determine the usefulness of the studied terpolymer as an anti-restenotic drug vehicle. Based on the obtained results it was established that polymer's degradation proceeded regularly and provided even paclitaxel release profiles. Double layer systems allowed to modify the amount of released drug which may be considered while developing the self-expanding drug-eluting stents tailoring different clinical indications.


Sujet(s)
Implant résorbable , Agents cardiovasculaires/composition chimique , Vecteurs de médicaments , Endoprothèses à élution de substances , Paclitaxel/composition chimique , Polymères/composition chimique , Calorimétrie différentielle à balayage , Agents cardiovasculaires/administration et posologie , Chimie pharmaceutique , Chromatographie sur gel , Chromatographie en phase liquide à haute performance , Resténose coronaire/prévention et contrôle , Préparations à action retardée , Dioxanes/composition chimique , Humains , Concentration en ions d'hydrogène , Hydrolyse , Cinétique , Paclitaxel/administration et posologie , Polyesters , Acide polyglycolique , Solubilité , Technologie pharmaceutique/méthodes , Température
20.
Acta Pol Pharm ; 71(6): 1023-8, 2014.
Article de Anglais | MEDLINE | ID: mdl-25745774

RÉSUMÉ

Bioresorbable, aliphatic polyesters are known in medicine where serve as orthopedic devices (e.g., rods, pins and screws) or sutures and staples in wound closure. Moreover, such materials are extensively stud- ied as scaffolds--three-dimensional structures for tissue engineering but also drug delivery systems (DDS). The aim of this study was to determine the release profile of paclitaxel, one of the anti-inflammatory, antiprolifera- tive and anti-restenotic agent, from biocompatible copolymer of L-lactide and ε-caprolactone that seems to be very attractive especially for minimally invasive surgery due to its potential shape-memory property. The influ- ence of drug on copolymer hydrolytic degradation was also analyzed. Three types of matrices (3%, 5% of PTX and without drug) were prepared by solvent-casting method and degraded in vitro. The physicochemical changes of copolymer were analyzed by means of nuclear magnetic resonance spectroscopy (NMR), gel per- meation chromatography (GPC) and differential scanning calorimetry (DSC). The amount of drug released into media was monitored with the use of high-pressure liquid chromatography (HPLC). Similar drug release pro- files were obtained for matrices with paclitaxel. The drug-containing matrices degraded slightly slower than drug free matrices, regardless PTX content. Results of this work may be helpful in designing new bioresorbable paclitaxel delivery system applied in anti-cancer therapy or drug-eluting stents technology.


Sujet(s)
Antinéoplasiques d'origine végétale/administration et posologie , Matériaux biocompatibles/composition chimique , Vecteurs de médicaments/composition chimique , Paclitaxel/administration et posologie , Polyesters/composition chimique , Calorimétrie différentielle à balayage , Chromatographie sur gel , Chromatographie en phase liquide à haute performance , Préparations à action retardée , Libération de médicament , Spectroscopie par résonance magnétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...