Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 49
Filtrer
1.
bioRxiv ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39005285

RÉSUMÉ

Circular RNAs are a novel class of RNA transcripts, which regulate important cellular functions in health and disease. Herein, we report on the functional relevance of the circPCMTD1 transcript in acute leukemias. In screening experiments, we found that circPCMTD1 depletion strongly inhibited the proliferative capacity of leukemic cells with BCR-ABL translocations. Mass cytometry experiments identified the aberrant activation of the DNA damage response as an early downstream event of circPCMTD1 depletion. In in vivo experiments, circPCMTD1 targeting prolonged the survival of mice engrafted with leukemic blasts harboring the Philadelphia chromosome. Mechanistically, we found that circPCMTD1 was enriched in the cytoplasm and associated with the ribosomes of the leukemic cells. We detected a cryptic open reading frame within the circPCMTD1 sequence and found that circPCMTD1 could generate a peptide product. The circPCMTD 1-derived peptide interacted with proteins of the BTR complex and enhanced BTR complex formation, thereby increasing tolerance to genotoxic stress.

2.
Nat Commun ; 15(1): 6053, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39025863

RÉSUMÉ

Respiratory viral infections cause morbidity and mortality worldwide. Despite the success of vaccines, vaccination efficacy is weakened by the rapid emergence of viral variants with immunoevasive properties. The development of an off-the-shelf, effective, and safe therapy against respiratory viral infections is thus desirable. Here, we develop NanoSTING, a nanoparticle formulation of the endogenous STING agonist, 2'-3' cGAMP, to function as an immune activator and demonstrate its safety in mice and rats. A single intranasal dose of NanoSTING protects against pathogenic strains of SARS-CoV-2 (alpha and delta VOC) in hamsters. In transmission experiments, NanoSTING reduces the transmission of SARS-CoV-2 Omicron VOC to naïve hamsters. NanoSTING also protects against oseltamivir-sensitive and oseltamivir-resistant strains of influenza in mice. Mechanistically, NanoSTING upregulates locoregional interferon-dependent and interferon-independent pathways in mice, hamsters, as well as non-human primates. Our results thus implicate NanoSTING as a broad-spectrum immune activator for controlling respiratory virus infection.


Sujet(s)
Administration par voie nasale , Nanoparticules , SARS-CoV-2 , Animaux , Nanoparticules/composition chimique , Nanoparticules/administration et posologie , Souris , Cricetinae , SARS-CoV-2/effets des médicaments et des substances chimiques , SARS-CoV-2/immunologie , Modèles animaux de maladie humaine , Humains , Protéines membranaires/agonistes , Protéines membranaires/métabolisme , Femelle , Nucléotides cycliques/pharmacologie , Rats , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/virologie , Infections à Orthomyxoviridae/prévention et contrôle , Infections à Orthomyxoviridae/virologie , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/traitement médicamenteux , Mâle , Antiviraux/pharmacologie , Antiviraux/administration et posologie , Souris de lignée C57BL
3.
Nat Commun ; 15(1): 6193, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39043645

RÉSUMÉ

Immunization programs against SARS-CoV-2 with commercial intramuscular vaccines prevent disease but are less efficient in preventing infections. Mucosal vaccines can provide improved protection against transmission, ideally for different variants of concern (VOCs) and related sarbecoviruses. Here, we report a multi-antigen, intranasal vaccine, NanoSTING-SN (NanoSTING-Spike-Nucleocapsid), eliminates virus replication in both the lungs and the nostrils upon challenge with the pathogenic SARS-CoV-2 Delta VOC. We further demonstrate that NanoSTING-SN prevents transmission of the SARS-CoV-2 Omicron VOC (BA.5) to vaccine-naïve hamsters. To evaluate protection against other sarbecoviruses, we immunized mice with NanoSTING-SN. We showed that immunization affords protection against SARS-CoV, leading to protection from weight loss and 100% survival in mice. In non-human primates, animals immunized with NanoSTING-SN show durable serum IgG responses (6 months) and nasal wash IgA responses cross-reactive to SARS-CoV-2 (XBB1.5), SARS-CoV and MERS-CoV antigens. These observations have two implications: (1) mucosal multi-antigen vaccines present a pathway to reducing transmission of respiratory viruses, and (2) eliciting immunity against multiple antigens can be advantageous in engineering pan-sarbecovirus vaccines.


Sujet(s)
Administration par voie nasale , Anticorps antiviraux , Vaccins contre la COVID-19 , COVID-19 , SARS-CoV-2 , Animaux , SARS-CoV-2/immunologie , COVID-19/prévention et contrôle , COVID-19/immunologie , COVID-19/transmission , COVID-19/virologie , Souris , Cricetinae , Anticorps antiviraux/immunologie , Anticorps antiviraux/sang , Vaccins contre la COVID-19/immunologie , Vaccins contre la COVID-19/administration et posologie , Femelle , Souris de lignée BALB C , Humains , Mesocricetus , Antigènes viraux/immunologie , Glycoprotéine de spicule des coronavirus/immunologie , Immunoglobuline G/sang , Immunoglobuline G/immunologie , Anticorps neutralisants/immunologie , Anticorps neutralisants/sang
4.
Vaccine ; 2024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38704256

RÉSUMÉ

Mucosal vaccines have the potential to elicit protective immune responses at the point of entry of respiratory pathogens, thus preventing even the initial seed infection. Unlike licensed injectable vaccines, mucosal vaccines comprising protein subunits are only in development. One of the primary challenges associated with mucosal vaccines has been identifying and characterizing safe yet effective mucosal adjuvants that can effectively prime multi-factorial mucosal immunity. In this study, we tested NanoSTING, a liposomal formulation of the endogenous activator of the stimulator of interferon genes (STING) pathway, cyclic guanosine adenosine monophosphate (cGAMP), as a mucosal adjuvant. We formulated a vaccine based on the H1 antigen (fusion protein of Ag85b and ESAT-6) adjuvanted with NanoSTING. Intranasal immunization of NanoSTING-H1 elicited a strong T-cell response in the lung of vaccinated animals characterized by (a) CXCR3+ KLRG1- lung resident T cells that are known to be essential for controlling bacterial infection, (b) IFNγ-secreting CD4+ T cells which is necessary for intracellular bactericidal activity, and (c) IL17-secreting CD4+ T cells that can confer protective immunity against multiple clinically relevant strains of Mtb. Upon challenge with aerosolized Mycobacterium tuberculosis Erdman strain, intranasal NanoSTING-H1 provides protection comparable to subcutaneous administration of the live attenuated Mycobacterium bovis vaccine strain Bacille-Calmette-Guérin (BCG). Our results indicate that NanoSTING adjuvanted protein vaccines can elicit a multi-factorial immune response that protects from infection by M. tuberculosis.

5.
iScience ; 27(6): 109817, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38770139

RÉSUMÉ

Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated Helicobacter pylori gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells in vitro, but in vivo it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.

6.
Front Microbiol ; 15: 1345617, 2024.
Article de Anglais | MEDLINE | ID: mdl-38525075

RÉSUMÉ

Agonists of the stimulator of interferon genes (STING) pathway are being explored as potential immunotherapeutics for the treatment of cancer and as vaccine adjuvants for infectious diseases. Although chemical synthesis of 2'3' - cyclic Guanosine Monophosphate-Adenosine Monophosphate (cGAMP) is commercially feasible, the process results in low yields and utilizes organic solvents. To pursue an efficient and environmentally friendly process for the production of cGAMP, we focused on the recombinant production of cGAMP via a whole-cell biocatalysis platform utilizing the murine cyclic Guanosine monophosphate-Adenosine monophosphate synthase (mcGAS). In E. coli BL21(DE3) cells, recombinant expression of mcGAS, a DNA-dependent enzyme, led to the secretion of cGAMP to the supernatants. By evaluating the: (1) media composition, (2) supplementation of divalent cations, (3) temperature of protein expression, and (4) amino acid substitutions pertaining to DNA binding; we showed that the maximum yield of cGAMP in the supernatants was improved by 30% from 146 mg/L to 186 ± 7 mg/mL under optimized conditions. To simplify the downstream processing, we developed and validated a single-step purification process for cGAMP using anion exchange chromatography. The method does not require protein affinity chromatography and it achieved a yield of 60 ± 2 mg/L cGAMP, with <20 EU/mL (<0.3 EU/µg) of endotoxin. Unlike chemical synthesis, our method provides a route for the recombinant production of cGAMP without the need for organic solvents and supports the goal of moving toward shorter, more sustainable, and more environmentally friendly processes.

7.
Cell Death Dis ; 15(2): 109, 2024 02 02.
Article de Anglais | MEDLINE | ID: mdl-38307835

RÉSUMÉ

Chimeric antigen receptor (CAR) T cell show promise in cancer treatments, but their mechanism of action is not well understood. Decoding the mechanisms used by individual T cells can help improve the efficacy of T cells while also identifying mechanisms of T cell failure leading to tumor escape. Here, we used a suite of assays including dynamic single-cell imaging of cell-cell interactions, dynamic imaging of fluorescent reporters to directly track cytotoxin activity in tumor cells, and scRNA-seq on patient infusion products to investigate the cytotoxic mechanisms used by individual CAR T cells in killing tumor cells. We show that surprisingly, overexpression of the Granzyme B (GZMB) inhibitor, protease inhibitor-9 (PI9), does not alter the cytotoxicity mediated by CD19-specific CAR T cells against either the leukemic cell line, NALM6; or the ovarian cancer cell line, SkOV3-CD19. We designed and validated reporters to directly assay T cell delivered GZMB activity in tumor cells and confirmed that while PI9 overexpression inhibits GZMB activity at the molecular level, this is not sufficient to impact the kinetics or magnitude of killing mediated by the CAR T cells. Altering cytotoxicity mediated by CAR T cells required combined inhibition of multiple pathways that are tumor cell specific: (a) B-cell lines like NALM6, Raji and Daudi were sensitive to combined GZMB and granzyme A (GZMA) inhibition; whereas (b) solid tumor targets like SkOV3-CD19 and A375-CD19 (melanoma) were sensitive to combined GZMB and Fas ligand inhibition. We realized the translational relevance of these findings by examining the scRNA-seq profiles of Tisa-cel and Axi-cel infusion products and show a significant correlation between GZMB and GZMA expression at the single-cell level in a T cell subset-dependent manner. Our findings highlight the importance of the redundancy in killing mechanisms of CAR T cells and how this redundancy is important for efficacious T cells.


Sujet(s)
Tumeurs , Récepteurs chimériques pour l'antigène , Humains , Récepteurs chimériques pour l'antigène/génétique , Granzymes/génétique , Lymphocytes T , Immunothérapie adoptive/méthodes
8.
Exp Hematol ; 123: 28-33.e3, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37209901

RÉSUMÉ

Mantle cell lymphoma (MCL) is an aggressive, noncurative, mature B-cell lymphoma, with a median overall survival of 6-7 years. This underlines a need for effective therapeutic strategies to treat MCL better. Epidermal growth factor-like 7 (EGFL7) is a protein secreted by endothelial cells shown to play a critical role in angiogenesis. Our laboratory has previously demonstrated that EGFL7 supports the growth of leukemic blasts in patients with acute myeloid leukemia (AML); however, its role in MCL has not been investigated yet. In this study, we report that EGFL7 messenger RNA (mRNA) is increased in the cells of patients with MCL compared with cells from healthy controls, and patients with high EGFL7 are associated with lower overall survival rates. Furthermore, EGFL7 is increased in the plasma of patients with MCL compared with the plasma from healthy controls. We further show that EGFL7 binds to epidermal growth factor receptor (EGFR) and activates AKT signaling pathway in MCL cells and that blocking EGFL7 in MCL in patient and cell lines decreases cell growth and increases apoptosis in vitro. Finally, anti-EGFL7 treatment inhibits tumor size and prolongs survival in a mouse model of MCL. In conclusion, our study reveals a role for EGFL7 in MCL cell proliferation and highlights EGFL7 inhibition as a promising new treatment for patients with MCL.


Sujet(s)
Lymphome à cellules du manteau , Animaux , Souris , Lignée cellulaire tumorale , Protéines de la famille de l'EGF/métabolisme , Cellules endothéliales/métabolisme , Lymphome à cellules du manteau/métabolisme , Transduction du signal , Humains
9.
J Vasc Surg ; 77(4): 1165-1173.e1, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36526086

RÉSUMÉ

OBJECTIVE: Hypercoagulability is common in severe acute respiratory syndrome coronavirus 2 and has been associated with arterial thrombosis leading to acute limb ischemia (ALI). Our objective was to determine the outcomes of concurrent coronavirus disease 2019 (COVID-19) infection and ALI, particularly during the Delta variant surge and the impact of vaccination status. METHODS: A retrospective review was performed of patients treated at a single health care system between March 2020 and December 2021 for ALI and recent (<14 days) COVID-19 infection or who developed ALI during hospitalization for the same disease. Patients were grouped by year as well as by pre and post Delta variant emergence in 2021 based on the World Health Organization timeline (January to May vs June to December). Baseline demographics, imaging, interventions, and outcomes were evaluated. A control cohort of all patients with ALI requiring surgical intervention for a 2-year period prior to the pandemic was used for comparison. Primary outcomes were in-hospital mortality and amputation-free survival. Kaplan-Meier survival and Cox proportional hazards analysis were performed. RESULTS: Forty acutely ischemic limbs were identified in 36 patients with COVID-19, the majority during the Delta surge (52.8%) and after the wide availability of vaccines. The rate of COVID-19-associated ALI, although low overall, nearly doubled during the Delta surge (0.37% vs 0.20%; P = .09). Intervention (open or endovascular revascularization vs primary amputation) was performed on 31 limbs in 28 individuals, with the remaining eight treated with systemic anti-coagulation. Postoperative mortality was 48%, and overall mortality was 50%. Major amputation following revascularization was significantly higher with COVID-19 ALI (25% vs 3%; P = .006) compared with the pre-pandemic group. Thirty-day amputation-free survival was significantly lower (log-rank P < .001). COVID-19 infection (adjusted hazard ratio, 6.2; P < .001) and age (hazard ratio, 1.1; P = .006) were associated with 30-day amputation in multivariate analysis. Severity of COVID-19 infection, defined as vasopressor usage, was not associated with post-revascularization amputation. There was a higher incidence of re-thrombosis in the latter half of 2021 with the Delta surge, as reintervention for recurrent ischemia of the same limb was more common than our previous experience (21% vs 0%; P = .55). COVID-19-associated limb ischemia occurred almost exclusively in non-vaccinated patients (92%). CONCLUSIONS: ALI observed with Delta appears more resistant to standard therapy. Unvaccinated status correlated highly with ALI occurrence in the setting of COVID-19 infection. Information of limb loss as a COVID-19 complication among non-vaccinated patients may help to increase compliance.


Sujet(s)
Vaccins contre la COVID-19 , COVID-19 , Procédures endovasculaires , Maladie artérielle périphérique , Humains , COVID-19/complications , Procédures endovasculaires/effets indésirables , Ischémie/imagerie diagnostique , Ischémie/étiologie , Ischémie/thérapie , Sauvetage de membre , Membre inférieur/vascularisation , Études rétrospectives , Facteurs de risque , SARS-CoV-2 , Résultat thérapeutique , Vaccins , Vaccins contre la COVID-19/effets indésirables
10.
Microorganisms ; 10(10)2022 Oct 19.
Article de Anglais | MEDLINE | ID: mdl-36296342

RÉSUMÉ

Cardiovascular diseases are associated with gut dysbiosis, but the role of microbe-derived metabolites as biomarkers or modulators of cardiovascular disease are not well understood. This is a targeted metabolomics study to investigate the association of nine microbe-derived metabolites with lower extremity peripheral artery disease (PAD), a form of atherosclerosis, and major adverse cardiac events (MACE). The study cohort consists of individuals with intermittent claudication and ankle-brachial index (ABI) < 0.9 (N = 119) and controls without clinically-apparent atherosclerosis (N = 37). The primary endpoint was MACE, a composite endpoint of myocardial infarction, coronary revascularization, stroke, transient ischemic attack, or cardiac-related death. Plasma metabolite concentrations differed significantly between the PAD and control groups. After adjustment for traditional atherosclerosis risk factors, kynurenine, hippuric acid, indole-3-propionic acid (IPA), and indole-3-aldehyde (I3A) concentrations were negatively associated with PAD, whereas indoxyl sulfate and 3-hydroxyanthranilic acid were positively associated. Hippuric acid, IPA, and I3A correlated with ABI, a surrogate for atherosclerotic disease burden. Those in the highest I3A concentration quartile had significantly improved freedom from MACE during follow-up compared to those in the lowest quartile. This study identifies specific indole- and phenyl-derived species impacted by gut microbial metabolic pathways that could represent novel microbiome-related biomarkers of PAD.

11.
Front Cell Dev Biol ; 10: 925761, 2022.
Article de Anglais | MEDLINE | ID: mdl-35923847

RÉSUMÉ

Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.

13.
Orthop J Sports Med ; 10(3): 23259671221078598, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-35356308

RÉSUMÉ

Background: Full-thickness chondral defects alter tibiofemoral joint homeostasis and, if left untreated, have the potential to progress to osteoarthritis. Purpose: To assess the effects of isolated and dual full-thickness chondral defect size and location on the biomechanical properties of the lateral femoral condyle (LFC) and medial femoral condyle (MFC) during dynamic knee flexion in goat knees without menisci. Methods: In 12 goat knees, we created progressively increasing full-thickness circular chondral defects (3-, 5-, and 7.5-mm diameter) in the weightbearing contact area of flexion and extension in the MFC, the LFC, or both. Each knee was fixed into a custom steel frame and attached to a motor with sensors inserted intra-articularly. For each testing condition, the knee was loaded to 100 N and underwent a dynamic range of motion between 90° of flexion and 30° of extension. The following parameters were collected: contact area, contact pressure, contact force, peak area, and peak pressure. Study Design: Controlled laboratory study. Results: The peak pressure at the defect rim of the MFC at full extension increased by 51.51% from no defect (1.887 MPa) to a 7.5-mm defect (2.859 MPa) (P < .001), and the peak pressure at the defect rim of the LFC at full extension increased by 139.14% from no defect (1.704 MPa) to a 7.5-mm defect (4.075 MPa) (P < .001). The peak pressures for LFC defects at all 3 diameters were significantly greater when compared with dual defects consisting of increasing LFC defect diameter and constant MFC defect diameter (P < .001 for all). Conclusion: Extremely large increases in peak pressure were seen at the rim of articular cartilage defects when evaluated under dynamic loading conditions. Isolated LFC defects experienced a greater increase in defect rim stress concentrations when compared with isolated MFC defects for equivalent increases in defect size. Defect size played a significant role independent of location for peak pressures on the MFC and LFC. Clinical Relevance: Significant rim-loading effects increase with defect size under dynamic loading and may result in increasingly rapid progression of articular cartilage lesions. Within the context of this goat model, findings suggest that lateral compartment chondral lesions are more likely to progress than medial compartment lesions of equivalent size.

14.
Blood Adv ; 6(7): 2403-2408, 2022 04 12.
Article de Anglais | MEDLINE | ID: mdl-34654057

RÉSUMÉ

Acute graft-versus-host disease (aGVHD) is the second most common cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT), underscoring the need for novel therapies. Based on previous work that endothelial cell dysfunction is present in aGVHD and that epidermal growth factor-like domain 7 (EGFL7) plays a significant role in decreasing inflammation by repressing endothelial cell activation and T-cell migration, we hypothesized that increasing EGFL7 levels after allo-HSCT will diminish the severity of aGVHD. Here, we show that treatment with recombinant EGFL7 (rEGFL7) in 2 different murine models of aGVHD decreases aGVHD severity and improves survival in recipient mice after allogeneic transplantation with respect to controls without affecting graft-versus-leukemia effect. Furthermore, we showed that rEGFL7 treatment results in higher thymocytes, T, B, and dendritic cell counts in recipient mice after allo-HSCT. This study constitutes a proof of concept of the ability of rEGFL7 therapy to reduce GHVD severity and mortality after allo-HSCT.


Sujet(s)
Maladie du greffon contre l'hôte , Transplantation de cellules souches hématopoïétiques , Animaux , Transplantation de moelle osseuse/effets indésirables , Cellules endothéliales , Maladie du greffon contre l'hôte/étiologie , Transplantation de cellules souches hématopoïétiques/effets indésirables , Transplantation de cellules souches hématopoïétiques/méthodes , Souris , Transplantation homologue
15.
J Vasc Surg Venous Lymphat Disord ; 10(1): 14-17, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34352418

RÉSUMÉ

Since December 2020, four vaccines for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) have been developed, and three have been approved for immediate use in the United States. Two are mRNA vaccines, and one uses a viral vector mechanism. Thrombotic complications have been reported after vaccine administration, which were primarily cerebral sinus thromboses after administration of the viral vector vaccines. To the best of our knowledge, we are the first to report venous thrombotic complications within days of administration of the mRNA-1273 (Moderna) vaccine. We present a series of three women who developed venous thromboembolism after RNA-1273 vaccination at a single healthcare system.


Sujet(s)
Vaccin ARNm-1273 contre la COVID-19/effets indésirables , COVID-19/prévention et contrôle , SARS-CoV-2/immunologie , Vaccination/effets indésirables , Thromboembolisme veineux/induit chimiquement , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Angiographie par tomodensitométrie , Femelle , Humains , Échographie-doppler , Thromboembolisme veineux/diagnostic
16.
Front Cardiovasc Med ; 8: 761007, 2021.
Article de Anglais | MEDLINE | ID: mdl-34805316

RÉSUMÉ

Lower extremity arterial occlusive disease (AOD) results in significant morbidity and mortality for the population, with up to 10% of patients ultimately requiring amputation. An alternative method for non-surgical revascularization which is yet to be fully understood is the optimization of the body's own natural collateral arterial network in a process known as arteriogenesis. Under conditions of conductance vessel stenosis or occlusion resulting in increased flow, shear forces, and pressure gradients within collaterals, positive remodeling occurs to increase the diameter and capacity of these vessels. The creation of a distal arteriovenous fistula (AVF) will drive increased arteriogenesis as compared to collateral formation with the occlusion of a conductance vessel alone by further increasing flow through these arterioles, demonstrating the capacity for arteriogenesis to form larger, more efficient collaterals beyond what is spontaneously achieved after arterial occlusion. Arteries rely on an extracellular matrix (ECM) composed of elastic fibers and collagens that provide stability under hemodynamic stress, and ECM remodeling is necessary to allow for increased diameter and flow conductance in mature arterial structures. When positive remodeling occurs, digestion of lamella and the internal elastic lamina (IEL) by matrix metalloproteinases (MMPs) and other elastases results in the rearrangement and thinning of elastic structures and may be replaced with disordered elastin synthesis without recovery of elastic function. This results in transmission of wall strain to collagen and potential for aneurysmal degeneration along collateral networks, as is seen in the pancreaticoduodenal artery (PDA) after celiac occlusion and inferior mesenteric artery (IMA) with concurrent celiac and superior mesenteric artery (SMA) occlusions. Further understanding into the development of collaterals is required to both better understand aneurysmal degeneration and optimize collateral formation in AOD.

18.
J Tissue Eng Regen Med ; 15(4): 388-400, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33590722

RÉSUMÉ

Aging affects the functionality of hematopoietic stem cells (HSCs), and therefore, aged individuals are not preferred as donors in HSC transplantation. Such elimination leads to the restriction of donor cohort. Several efforts are being done to rejuvenate aged HSCs. Here, we show that treatment of aged mice with curcumin rejuvenates their HSCs by restoring the expression of autophagy-inducing messenger RNAs in them, and improves their engraftment capacity. Importantly, we show that curcumin is effective in rejuvenation of HSCs when administered via both, intraperitoneal as well as oral routes. Aging also affects the immune system. While elderly individuals are not immuno-deficient, they do not respond optimally to immunizations, and hence, a strategy needs to be developed to make them immunologically responsive. Programmed cell death 1 (PD-1), one of the inhibitory coreceptors, plays an important role in the regulation of autoimmunity, infectious immunity, and cancer immunity. Its expression on T cells is indicative of their exhaustion. Here, we show that curcumin reduces the frequency of PD1+ cytotoxic T cells in the spleens of aged mice. Curcumin has a proven safety profile, and hence, can be used to treat aged donors to boost the functionality of their HSCs and also to improve the immunological profile of aged individuals. These data could have implications in various other regenerative medicine protocols as well.


Sujet(s)
Vieillissement de la cellule , Curcumine/pharmacologie , Transplantation de cellules souches hématopoïétiques , Cellules souches hématopoïétiques/cytologie , Récepteur-1 de mort cellulaire programmée/métabolisme , Lymphocytes T cytotoxiques/métabolisme , Administration par voie orale , Animaux , Apoptose/effets des médicaments et des substances chimiques , Autophagie/effets des médicaments et des substances chimiques , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Curcumine/administration et posologie , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Cellules souches hématopoïétiques/effets des médicaments et des substances chimiques , Injections péritoneales , Souris de lignée C57BL , ARN messager/génétique , ARN messager/métabolisme , Régénération/effets des médicaments et des substances chimiques , Lymphocytes T cytotoxiques/effets des médicaments et des substances chimiques
19.
Front Cardiovasc Med ; 8: 762094, 2021.
Article de Anglais | MEDLINE | ID: mdl-35096993

RÉSUMÉ

Background: During arteriogenesis, outward remodeling of the arterial wall expands luminal diameter to produce increased conductance in developing collaterals. We have previously shown that diameter expansion without loss of internal elastic lamina (IEL) integrity requires both degradation of elastic fibers and LOX-mediated repair. The aim of this study was to investigate the expression of genes involved in remodeling of the extracellular matrix (ECM) using a model of arteriogenesis. Methods: Sprague-Dawley rats underwent femoral artery ligation with distal arteriovenous fistula (FAL + AVF) placement. Profunda femoral arteries (PFA) were harvested for analysis at various time points. Serum desmosine, an amino acid found exclusively in elastin, was evaluated with enzyme-linked immunosorbent assay (ELISA) as a marker of tissue elastolysis. Tissue mRNA isolated from FAL + AVF exposed PFAs was compared to the contralateral sham-operated using qPCR. HCAECs were cultured under low shear stress (8 dyn·s/cm 2) for 24 h and then exposed to high shear stress (40 dyn·s/cm 2) for 2-6 h. Primers used included FBN-1, FBN-2, Timp-2, LOX-1, Trop-E, Cath-K, Cath-S, MMP-2, MMP-9, FBLN-4, and FBLN-5 and were normalized to GAPDH. mRNA fold changes were quantified using the 2-ΔΔCq method. Comparisons between time points were made with non-parametric ANOVA analysis with Bonferroni adjustment. Results: PFAs showed IEL reorganization during arteriogenesis. Serum desmosine levels are significantly elevated at 2 days and one week, with a return to baseline thereafter (p < 0.01). Expression of ECM structural proteins (FBN-1, FBN-2, FBLN-4, FBLN-5, Tropoelastin, TIMP-2, LOX-1) and elastolytic proteins (MMP-2, MMP-9, Cathepsin S, Cathepsin K) exhibited an early peak (p < 0.05) relative to sham PFAs. After two weeks, expression returned to baseline. HCAECs demonstrated upregulation of FBN-2, FBLN-5, LOX-1 and Trop-E at 4 h of high shear stress, as well as elastolytic protein MMP-2. Conclusions: Elastin degradation begins early in arteriogenesis and is mediated by local upregulation of elastolytic genes. Elastolysis appears to be simultaneously balanced by production of elastic fiber components which may facilitate stabilization of the IEL. Endothelial cells are central to initiation of arteriogenesis and begin ECM remodeling in response to altered shear stress.

20.
Ann Vasc Surg ; 71: 535.e11-535.e15, 2021 Feb.
Article de Anglais | MEDLINE | ID: mdl-33160057

RÉSUMÉ

BACKGROUND: Lipomas are the most common form of benign soft tissue neoplasms and most frequently occur in the subcutaneous tissue. Rarely does a lipoma primarily arise from the arteries or veins. The most common location for an intravascular lipoma is the inferior vena cava, and rarely lipomas originate in the superior vena cava (SVC). Large lipomas of the SVC may be associated with central venous occlusive symptoms. There are only 7 cases of SVC lipomas reported in the literature. Here, we present only the second case of a large symptomatic lipoma located in the SVC, right internal jugular vein, and innominate veins. METHODS: We present a case of a 5-cm lipoma located in the SVC, discovered incidentally and surgically resected via median sternotomy. RESULTS: The patient underwent a successful open surgical resection of a symptomatic lipoma located in his SVC. CONCLUSIONS: Lipomas of the SVC are exceptionally rare, with only 7 cases described in the literature. This case demonstrates that lipomas can be safely excised from the SVC leading to resolution of central venous occlusive symptoms. A comprehensive literature review reveals that surgical resection is generally without complication, leads to resolution of symptoms, and does not require long-term follow-up.


Sujet(s)
Lipome/chirurgie , Tumeurs vasculaires/chirurgie , Procédures de chirurgie vasculaire , Veine cave supérieure/chirurgie , Humains , Lipome/complications , Lipome/imagerie diagnostique , Lipome/anatomopathologie , Mâle , Adulte d'âge moyen , Sternotomie , Résultat thérapeutique , Charge tumorale , Tumeurs vasculaires/complications , Tumeurs vasculaires/imagerie diagnostique , Tumeurs vasculaires/anatomopathologie , Veine cave supérieure/imagerie diagnostique , Veine cave supérieure/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE