Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Front Microbiol ; 15: 1342331, 2024.
Article de Anglais | MEDLINE | ID: mdl-38562478

RÉSUMÉ

In agricultural environments, plants are often exposed to abiotic stresses including temperature extremes, salt stress, drought, and heavy metal soil contamination, which leads to significant economic losses worldwide. Especially salt stress and drought pose serious challenges since they induce ionic toxicity, osmotic stress, and oxidative stress in plants. A potential solution can be the application of bacteria of the Serratia spp. known to promote plant growth under normal conditions Thus the mini-review aims to summarize the current knowledge on plant growth promotion by Serratia spp. (under the conditions of salinity stress, drought, and nutrient deficit) and highlight areas for development in the field. So far, it has been proven that Serratia spp. strains exhibit a variety of traits contributing to enhanced plant growth and stress tolerance, such as phytohormone production, ACC deaminase activity, nitrogen fixation, P and Zn solubilization, antioxidant properties improvement, and modulation of gene expression. Nevertheless, further research on Serratia spp. is needed, especially on two subjects: elucidating its mechanisms of action on plants at the molecular level and the effects of Serratia spp. on the indigenous soil and plant microbiota and, particularly, the rhizosphere. In both cases, it is advisable to use omics techniques to gain in-depth insights into the issues. Additionally, some strains of Serratia spp. may be phytopathogens, therefore studies to rule out this possibility are recommended prior to field trials. It is believed that by improving said knowledge the potential of Serratia spp. to stimulate plant growth will increase and strains from the genus will serve as an eco-friendly biofertilizer in sustainable agriculture more often.

2.
Environ Sci Pollut Res Int ; 31(2): 2377-2393, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38066279

RÉSUMÉ

Since reservoirs perform many important functions, they are exposed to various types of unfavorable phenomena, e.g., eutrophication which leads to a rapid growth of algae (blooms) that degrade water quality. One of the solutions to combat phytoplankton blooms are effective microorganisms (EM). The study aims to evaluate the potential of EM in improving the water quality of the Turawa reservoir on the Mala Panew River in Poland. It is one of the first studies providing insights into the effectiveness of using EM in the bioremediation of water in a eutrophic reservoir. Samples for the study were collected in 2019-2021. The analysis showed that EM could be one of the most effective methods for cleaning water from unfavorable microorganisms (HBN22, HBN36, CBN, FCBN, FEN) - after the application of EM, a reduction in their concentration was observed (from 46.44 to 58.38% on average). The duration of their effect ranged from 17.6 to 34.1 days. The application of EM improved the trophic status of the Turawa reservoir, expressed by the Carlson index, by 7.78%. As shown in the literature review, the use of other methods of water purification (e.g., constructed wetlands, floating beds, or intermittent aeration) leads to an increase in the effectiveness and a prolongation of the duration of the EM action. The findings of the study might serve as a guide for the restoration of eutrophic reservoirs by supporting sustainable management of water resources. Nevertheless, further research should be conducted on the effectiveness of EM and their application in the remediation of eutrophic water reservoirs.


Sujet(s)
Purification de l'eau , Qualité de l'eau , Eutrophisation , Phosphore/analyse , Phytoplancton , Ressources en eau
3.
Front Microbiol ; 14: 1194606, 2023.
Article de Anglais | MEDLINE | ID: mdl-37560520

RÉSUMÉ

Plant growth-promoting bacteria are one of the most interesting methods of controlling fungal phytopathogens. These bacteria can participate in biocontrol via a variety of mechanisms including lipopeptide production, hydrolytic enzymes (e.g., chitinase, cellulases, glucanase) production, microbial volatile organic compounds (mVOCs) production, and induced systemic resistance (ISR) triggering. Among the bacterial genera most frequently studied in this aspect are Bacillus spp. including Bacillus pumilus. Due to the range of biocontrol traits, B. pumilus is one of the most interesting members of Bacillus spp. that can be used in the biocontrol of fungal phytopathogens. So far, a number of B. pumilus strains that exhibit biocontrol properties against fungal phytopathogens have been described, e.g., B. pumilus HR10, PTB180, B. pumilus SS-10.7, B. pumilus MCB-7, B. pumilus INR7, B. pumilus SE52, SE34, SE49, B. pumilus RST25, B. pumilus JK-SX001, and B. pumilus KUDC1732. B. pumilus strains are capable of suppressing phytopathogens such as Arthrobotrys conoides, Fusarium solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Rhizoctonia solani, and Fagopyrum esculentum. Importantly, B. pumilus can promote plant growth regardless of whether it alters the native microbiota or not. However, in order to increase its efficacy, research is still needed to clarify the relationship between the native microbiota and B. pumilus. Despite that, it can already be concluded that B. pumilus strains are good candidates to be environmentally friendly and commercially effective biocontrol agents.

4.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-37298706

RÉSUMÉ

Plant growth-promoting bacteria (PGPB) appear to be a sensible competitor to conventional fertilization, including mineral fertilizers and chemical plant protection products. Undoubtedly, one of the most interesting bacteria exhibiting plant-stimulating traits is, more widely known as a pathogen, Bacillus cereus. To date, several environmentally safe strains of B. cereus have been isolated and described, including B. cereus WSE01, MEN8, YL6, SA1, ALT1, ERBP, GGBSTD1, AK1, AR156, C1L, and T4S. These strains have been studied under growth chamber, greenhouse, and field conditions and have shown many significant traits, including indole-3-acetic acid (IAA) and aminocyclopropane-1-carboxylic acid (ACC) deaminase production or phosphate solubilization, which allows direct plant growth promotion. It includes an increase in biometrics traits, chemical element content (e.g., N, P, and K), and biologically active substances content or activity, e.g., antioxidant enzymes and total soluble sugar. Hence, B. cereus has supported the growth of plant species such as soybean, maize, rice, and wheat. Importantly, some B. cereus strains can also promote plant growth under abiotic stresses, including drought, salinity, and heavy metal pollution. In addition, B. cereus strains produced extracellular enzymes and antibiotic lipopeptides or triggered induced systemic resistance, which allows indirect stimulation of plant growth. As far as biocontrol is concerned, these PGPB can suppress the development of agriculturally important phytopathogens, including bacterial phytopathogens (e.g., Pseudomonas syringae, Pectobacterium carotovorum, and Ralstonia solanacearum), fungal phytopathogens (e.g., Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani), and other phytopathogenic organisms (e.g., Meloidogyne incognita (Nematoda) and Plasmodiophora brassicae (Protozoa)). In conclusion, it should be noted that there are still few studies on the effectiveness of B. cereus under field conditions, particularly, there is a lack of comprehensive analyses comparing the PGP effects of B. cereus and mineral fertilizers, which should be reduced in favor of decreasing the use of mineral fertilizers. It is also worth mentioning that there are still very few studies on the impact of B. cereus on the indigenous microbiota and its persistence after application to soil. Further studies would help to understand the interactions between B. cereus and indigenous microbiota, subsequently contributing to increasing its effectiveness in promoting plant growth.


Sujet(s)
Bacillus cereus , Engrais , Développement des plantes , Phosphates/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...