Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Molecules ; 26(12)2021 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-34207029

RÉSUMÉ

The application of micro-Raman spectroscopy was used for characterization of structural features of the high-k stack (h-k) layer of "silicon-on-insulator" (SOI) nanowire (NW) chip (h-k-SOI-NW chip), including Al2O3 and HfO2 in various combinations after heat treatment from 425 to 1000 °C. After that, the NW structures h-k-SOI-NW chip was created using gas plasma etching optical lithography. The stability of the signals from the monocrine phase of HfO2 was shown. Significant differences were found in the elastic stresses of the silicon layers for very thick (>200 nm) Al2O3 layers. In the UV spectra of SOI layers of a silicon substrate with HfO2, shoulders in the Raman spectrum were observed at 480-490 cm-1 of single-phonon scattering. The h-k-SOI-NW chip created in this way has been used for the detection of DNA-oligonucleotide sequences (oDNA), that became a synthetic analog of circular RNA-circ-SHKBP1 associated with the development of glioma at a concentration of 1.1 × 10-16 M. The possibility of using such h-k-SOI NW chips for the detection of circ-SHKBP1 in blood plasma of patients diagnosed with neoplasm of uncertain nature of the brain and central nervous system was shown.


Sujet(s)
Gliome/génétique , Nanofils/composition chimique , ARN circulaire/composition chimique , ARN circulaire/génétique , Silicium/composition chimique , Sujet âgé , Techniques de biocapteur/méthodes , Encéphale/effets des médicaments et des substances chimiques , Femelle , Humains , Mâle , Adulte d'âge moyen , Séquençage par oligonucléotides en batterie/méthodes , Analyse spectrale Raman/méthodes
2.
Sci Rep ; 11(1): 8421, 2021 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-33875767

RÉSUMÉ

The combination of the unique properties of diamond and the prospects for its high-technology applications urges the search for new solvents-catalysts for the synthesis of diamonds with rare and unusual properties. Here we report the synthesis of diamond from melts of 15 rare-earth metals (REM) at 7.8 GPa and 1800-2100 °C. The boundary conditions for diamond crystallization and the optimal parameters for single crystal diamond synthesis are determined. Depending on the REM catalyst, diamond crystallizes in the form of cube-octahedrons, octahedrons and specific crystals bound by tetragon-trioctahedron and trigon-trioctahedron faces. The synthesized diamonds are nitrogen-free and belong to the rare type II, indicating that the rare-earth metals act as both solvent-catalysts and nitrogen getters. It is found that the REM catalysts enable synthesis of diamond doped with group IV elements with formation of impurity-vacancy color centers, promising for the emerging quantum technologies. Our study demonstrates a new field of application of rare-earth metals.

3.
Sensors (Basel) ; 21(4)2021 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-33668578

RÉSUMÉ

Application of micro-Raman spectroscopy for the monitoring of quality of nanowire sensor chips fabrication has been demonstrated. Nanowire chips have been fabricated on the basis of «silicon-on-insulator¼ (SOI) structures (SOI-NW chips). The fabrication of SOI-NW chips was performed by optical litography with gas-phase etching. The so-fabricated SOI-NW chips are intended for highly sensitive detection of brain cancer biomarkers in humans. In our present study, two series of experiments have been conducted. In the first experimental series, detection of a synthetic DNA oligonucleotide (oDNA) analogue of brain cancer-associated microRNA miRNA-363 in purified buffer solution has been performed in order to demonstrate the high detection sensitivity. The second experimental series has been performed in order to reveal miRNA-363 itself in real human plasma samples. To provide detection biospecificity, the SOI-NW chip surface was modified by covalent immobilization of probe oligonucleotides (oDNA probes) complementary to the target biomolecules. Using the SOI-NW sensor chips proposed herein, the concentration detection limit of the target biomolecules at the level of 3.3 × 10-17 M has been demonstrated. Thus, the approach employing the SOI-NW chips proposed herein represents an attractive tool in biomedical practice, aimed at the early revelation of oncological diseases in humans.


Sujet(s)
Techniques de biocapteur , Tumeurs du cerveau , microARN , Nanofils , Tumeurs du cerveau/diagnostic , Tumeurs du cerveau/génétique , Humains , microARN/génétique , Plasma sanguin , Contrôle de qualité , Silicium , Analyse spectrale Raman
4.
Sci Adv ; 7(4)2021 Jan.
Article de Anglais | MEDLINE | ID: mdl-33523914

RÉSUMÉ

Most natural diamonds are formed in Earth's lithospheric mantle; however, the exact mechanisms behind their genesis remain debated. Given the occurrence of electrochemical processes in Earth's mantle and the high electrical conductivity of mantle melts and fluids, we have developed a model whereby localized electric fields play a central role in diamond formation. Here, we experimentally demonstrate a diamond crystallization mechanism that operates under lithospheric mantle pressure-temperature conditions (6.3 and 7.5 gigapascals; 1300° to 1600°C) through the action of an electric potential applied across carbonate or carbonate-silicate melts. In this process, the carbonate-rich melt acts as both the carbon source and the crystallization medium for diamond, which forms in assemblage with mantle minerals near the cathode. Our results clearly demonstrate that electric fields should be considered a key additional factor influencing diamond crystallization, mantle mineral-forming processes, carbon isotope fractionation, and the global carbon cycle.

5.
Micromachines (Basel) ; 12(2)2021 Feb 03.
Article de Anglais | MEDLINE | ID: mdl-33546438

RÉSUMÉ

Gas-phase etching and optical lithography were employed for the fabrication of a silicon nanoribbon chip (Si-NR chip). The quality of the so-fabricated silicon nanoribbons (Si-NRs) was monitored by optical Raman scattering spectroscopy. It was demonstrated that the structures of the Si-NRs were virtually defect-free, meaning they could be used for highly sensitive detection of biological macromolecules. The Si-NR chips were then used for the highly sensitive nanoelectronics detection of DNA oligonucleotides (oDNAs), which represent synthetic analogs of 106a-5p microRNA (miR-106a-5p), associated with the development of autism spectrum disorders in children. The specificity of the analysis was attained by the sensitization of the Si-NR chip sur-face by covalent immobilization of oDNA probes, whose nucleotide sequence was complementary to the known sequence of miR-106a-5p. The use of the Si-NR chip was demonstrated to al-low for the rapid label-free real-time detection of oDNA at ultra-low (~10-17 M) concentrations.

6.
ACS Omega ; 5(29): 18376-18383, 2020 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-32743213

RÉSUMÉ

In this article, we report the influence of oxygen concentration in the transition-metal solvent-catalyst on the crystallization processes, morphology, and defect-and-impurity content of diamond crystals. In a series of experiments, the concentration of oxygen (C O) in the growth system was varied by adding Fe2O3 to the charge, and the other parameters and conditions of the growth were constant: Ni7Fe3 solvent-catalyst, P = 6.0 GPa, T = 1400 °C, and duration of 40 h. It is found that on increasing C O in the growth system from 0 to 10 wt %, the crystallization of diamond proceeds through the following stages: single crystal → block crystal → spontaneous crystals → aggregate of block crystals and twin crystals. At C O ≥ 5 wt %, diamond crystallizes jointly with wustite (FeO) and metastable graphite. The oxygen solubility in the iron-nickel melt is estimated at about 2 wt %. With increasing oxygen content in the system, the range of nitrogen concentrations in diamonds crystallized in one experiment significantly broadens with the maximum nitrogen concentrations being increased from 200-250 ppm in the experiment without O additives to 1100-1200 ppm in the experiment with 10 wt % O added. The established joint growth of diamond and wustite suggests possible crystallization of natural diamonds in the Fe-Ni-O-C system over a wide range of oxygen concentrations up to 10 wt %.

7.
Biosensors (Basel) ; 8(3)2018 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-30060476

RÉSUMÉ

Application of micro-Raman spectroscopy for the monitoring of quality of high-k (h-k) dielectric protective layer deposition onto the surface of a nanowire (NW) chip has been demonstrated. A NW chip based on silicon-on-insulator (SOI) structures, protected with a layer of high-k dielectric ((h-k)-SOI-NW chip), has been employed for highly sensitive detection of microRNA (miRNA) associated with oncological diseases. The protective dielectric included a 2-nm-thick Al2O3 surface layer and a 8-nm-thick HfO2 layer, deposited onto a silicon SOI-NW chip. Such a chip had increased time stability upon operation in solution, as compared with an unprotected SOI-NW chip with native oxide. The (h-k)-SOI-NW biosensor has been employed for the detection of DNA oligonucleotide (oDNA), which is a synthetic analogue of miRNA-21 associated with oncological diseases. To provide biospecificity of the detection, the surface of (h-k)-SOI-NW chip was modified with oligonucleotide probe molecules (oDVA probes) complementary to the sequence of the target biomolecule. Concentration sensitivity of the (h-k)-SOI-NW biosensor at the level of DL~10-16 M has been demonstrated.


Sujet(s)
Techniques de biocapteur/méthodes , microARN/analyse , Procédures d'analyse sur micropuce/méthodes , Nanofils/composition chimique , Analyse spectrale Raman/méthodes , Composés de l'aluminium/composition chimique , Techniques de biocapteur/instrumentation , Spectroscopie diélectrique/instrumentation , Spectroscopie diélectrique/méthodes , Silicium/composition chimique , Analyse spectrale Raman/instrumentation , Transistors électroniques
8.
Sci Rep ; 5: 14789, 2015 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-26435400

RÉSUMÉ

Diamond attracts considerable attention as a versatile and technologically useful material. For many demanding applications, such as recently emerged quantum optics and sensing, it is important to develop new routes for fabrication of diamond containing defects with specific optical, electronic and magnetic properties. Here we report on successful synthesis of diamond from a germanium-carbon system at conditions of 7 GPa and 1,500-1,800 °C. Both spontaneously nucleated diamond crystals and diamond growth layers on seeds were produced in experiments with reaction time up to 60 h. We found that diamonds synthesized in the Ge-C system contain a new optical centre with a ZPL system at 2.059 eV, which is assigned to germanium impurities. Photoluminescence from this centre is dominated by zero-phonon optical transitions even at room temperature. Our results have widened the family of non-metallic elemental catalysts for diamond synthesis and demonstrated the creation of germanium-related optical centres in diamond.

9.
Proc Natl Acad Sci U S A ; 110(51): 20408-13, 2013 Dec 17.
Article de Anglais | MEDLINE | ID: mdl-24297876

RÉSUMÉ

Subduction tectonics imposes an important role in the evolution of the interior of the Earth and its global carbon cycle; however, the mechanism of the mantle-slab interaction remains unclear. Here, we demonstrate the results of high-pressure redox-gradient experiments on the interactions between Mg-Ca-carbonate and metallic iron, modeling the processes at the mantle-slab boundary; thereby, we present mechanisms of diamond formation both ahead of and behind the redox front. It is determined that, at oxidized conditions, a low-temperature Ca-rich carbonate melt is generated. This melt acts as both the carbon source and crystallization medium for diamond, whereas at reduced conditions, diamond crystallizes only from the Fe-C melt. The redox mechanism revealed in this study is used to explain the contrasting heterogeneity of natural diamonds, as seen in the composition of inclusions, carbon isotopic composition, and nitrogen impurity content.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE