Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 121
Filtrer
1.
Chempluschem ; : e202400242, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38881532

RÉSUMÉ

Single particle cryo electron microscopy (cryo-EM) is now the major method for the determination of integral membrane protein structure. For the success of a given project the type of membrane mimetic used for extraction from the native cell membrane, purification to homogeneity and finally cryo-grid vitrification is crucial. Although small molecule amphiphiles - detergents - are the most widely used membrane mimetic, specific tailoring of detergent structure for single particle cryo-EM is rare and the demand for effective detergents not satisfied. Here, we compare the popular detergent lauryl maltose-neopentyl glycol (LMNG) with the novel detergent neopentyl glycol-derived triglucoside-C11 (NDT-C11) in its behavior as free detergent and when bound to two types of multisubunit membrane protein complexes - cyanobacterial photosystem I (PSI) and mammalian F-ATP synthase. We conclude that NDT-C11 has high potential to become a very useful detergent for single particle cryo-EM of integral membrane proteins.

2.
Database (Oxford) ; 20242024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38803272

RÉSUMÉ

The Protein Data Bank (PDB) is the global repository for public-domain experimentally determined 3D biomolecular structural information. The archival nature of the PDB presents certain challenges pertaining to updating or adding associated annotations from trusted external biodata resources. While each Worldwide PDB (wwPDB) partner has made best efforts to provide up-to-date external annotations, accessing and integrating information from disparate wwPDB data centers can be an involved process. To address this issue, the wwPDB has established the PDB Next Generation (or NextGen) Archive, developed to centralize and streamline access to enriched structural annotations from wwPDB partners and trusted external sources. At present, the NextGen Archive provides mappings between experimentally determined 3D structures of proteins and UniProt amino acid sequences, domain annotations from Pfam, SCOP2 and CATH databases and intra-molecular connectivity information. Since launch, the PDB NextGen Archive has seen substantial user engagement with over 3.5 million data file downloads, ensuring researchers have access to accurate, up-to-date and easily accessible structural annotations. Database URL: http://www.wwpdb.org/ftp/pdb-nextgen-archive-site.


Sujet(s)
Bases de données de protéines , Annotation de séquence moléculaire , Protéines/composition chimique
3.
Structure ; 32(6): 824-837.e1, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38490206

RÉSUMÉ

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.


Sujet(s)
Bases de données de protéines , Modèles moléculaires , Résonance magnétique nucléaire biomoléculaire , Conformation des protéines , Protéines , Résonance magnétique nucléaire biomoléculaire/méthodes , Protéines/composition chimique , Logiciel
4.
J Mol Biol ; : 168546, 2024 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-38508301

RÉSUMÉ

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

5.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38358351

RÉSUMÉ

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Sujet(s)
Curation de données , Cryomicroscopie électronique/méthodes
6.
bioRxiv ; 2024 Jan 22.
Article de Anglais | MEDLINE | ID: mdl-38328042

RÉSUMÉ

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

7.
ArXiv ; 2024 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-38076521

RÉSUMÉ

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

8.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 792-795, 2023 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-37561405

RÉSUMÉ

The Protein Data Bank (PDB) is the single global archive of atomic-level, three-dimensional structures of biological macromolecules experimentally determined by macromolecular crystallography, nuclear magnetic resonance spectroscopy or three-dimensional cryo-electron microscopy. The PDB is growing continuously, with a recent rapid increase in new structure depositions from Asia. In 2022, the Worldwide Protein Data Bank (wwPDB; https://www.wwpdb.org/) partners welcomed Protein Data Bank China (PDBc; https://www.pdbc.org.cn) to the organization as an Associate Member. PDBc is based in the National Facility for Protein Science in Shanghai which is associated with the Shanghai Advanced Research Institute of Chinese Academy of Sciences, the Shanghai Institute for Advanced Immunochemical Studies and the iHuman Institute of ShanghaiTech University. This letter describes the history of the wwPDB, recently established mechanisms for adding new wwPDB data centers and the processes developed to bring PDBc into the partnership.


Sujet(s)
Protéines , Humains , Conformation des protéines , Cryomicroscopie électronique , Chine , Protéines/composition chimique , Spectroscopie par résonance magnétique , Bases de données de protéines
9.
FEBS Lett ; 597(17): 2149-2160, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37400274

RÉSUMÉ

Axonemal dynein is an ATP-dependent microtubular motor protein responsible for cilia and flagella beating, and its dysfunction can cause diseases such as primary ciliary dyskinesia and sperm dysmotility. Despite its biological importance, structure-based mechanisms underlying axonemal dynein motors remain unclear. Here, we determined the X-ray crystal structure of the human inner-arm dynein-d (DNAH1) stalk region, which contains a long antiparallel coiled-coil and a microtubule-binding domain (MTBD), at 2.7 Å resolution. Notably, differences in the relative orientation of the coiled-coil and MTBD in comparison with other dyneins, as well as the diverse orientations of the MTBD flap region among various isoforms, lead us to propose a 'spike shoe model' with an altered stepping angle for the interaction between IAD-d and microtubules. Based on these findings, we discuss isoform-specific functions of the axonemal dynein stalk MTBDs.


Sujet(s)
Dynéines de l'axonème , Dynéines , Mâle , Humains , Dynéines de l'axonème/composition chimique , Dynéines de l'axonème/métabolisme , Dynéines/métabolisme , Sites de fixation , Sperme , Liaison aux protéines , Microtubules/métabolisme
10.
Biochim Biophys Acta Bioenerg ; 1864(4): 148986, 2023 11 01.
Article de Anglais | MEDLINE | ID: mdl-37270022

RÉSUMÉ

Photosystem I (PSI) from the green alga Chlamydomonas reinhardtii, with various numbers of membrane bound antenna complexes (LHCI), has been described in great detail. In contrast, structural characterization of soluble binding partners is less advanced. Here, we used X-ray crystallography and single particle cryo-EM to investigate three structures of the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. An X-ray structure demonstrates the absence of six chlorophylls from the luminal side of the LHCI belts, suggesting these pigments were either physically absent or less stably associated with the complex, potentially influencing excitation transfer significantly. CryoEM revealed extra densities on luminal and stromal sides of the supercomplex, situated in the vicinity of the electron transfer sites. These densities disappeared after the binding of oxidized ferredoxin to PSI-LHCI. Based on these structures, we propose the existence of a PSI-LHCI resting state with a reduced active chlorophyll content, electron donors docked in waiting positions and regulatory binding partners positioned at the electron acceptor site. The resting state PSI-LHCI supercomplex would be recruited to its active form by the availability of oxidized ferredoxin.


Sujet(s)
Chlamydomonas reinhardtii , Complexe protéique du photosystème I , Complexe protéique du photosystème I/métabolisme , Chlamydomonas reinhardtii/métabolisme , Ferrédoxines/métabolisme , Complexes collecteurs de lumière/métabolisme , Chlorophylle/métabolisme
11.
Biophys Physicobiol ; 20(1): e200008, 2023.
Article de Anglais | MEDLINE | ID: mdl-37234853

RÉSUMÉ

Ciliary bending movements are powered by motor protein axonemal dyneins. They are largely classified into two groups, inner-arm dynein and outer-arm dynein. Outer-arm dynein, which is important for the elevation of ciliary beat frequency, has three heavy chains (α, ß, and γ), two intermediate chains, and more than 10 light chains in green algae, Chlamydomonas. Most of intermediate chains and light chains bind to the tail regions of heavy chains. In contrast, the light chain LC1 was found to bind to the ATP-dependent microtubule-binding domain of outer-arm dynein γ-heavy chain. Interestingly, LC1 was also found to interact with microtubules directly, but it reduces the affinity of the microtubule-binding domain of γ-heavy chain for microtubules, suggesting the possibility that LC1 may control ciliary movement by regulating the affinity of outer-arm dyneins for microtubules. This hypothesis is supported by the LC1 mutant studies in Chlamydomonas and Planaria showing that ciliary movements in LC1 mutants were disordered with low coordination of beating and low beat frequency. To understand the molecular mechanism of the regulation of outer-arm dynein motor activity by LC1, X-ray crystallography and cryo-electron microscopy have been used to determine the structure of the light chain bound to the microtubule-binding domain of γ-heavy chain. In this review article, we show the recent progress of structural studies of LC1, and suggest the regulatory role of LC1 in the motor activity of outer-arm dyneins. This review article is an extended version of the Japanese article, The Complex of Outer-arm Dynein Light Chain-1 and the Microtubule-binding Domain of the Heavy Chain Shows How Axonemal Dynein Tunes Ciliary Beating, published in SEIBUTSU BUTSURI Vol. 61, p. 20-22 (2021).

12.
Curr Res Struct Biol ; 5: 100101, 2023.
Article de Anglais | MEDLINE | ID: mdl-37180033

RÉSUMÉ

In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical ß-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.

13.
Chem Sci ; 14(14): 3932-3937, 2023 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-37035687

RÉSUMÉ

We repurposed the metal-binding site of a cupin superfamily protein into the 2-His-1-carboxylate facial triad, which is one of the common motifs in natural non-heme enzymes, to construct artificial metalloenzymes that can catalyze new-to-nature reactions. The Cu2+-H52A/H58E variant catalyzed the stereoselective Michael addition reaction and was found to bear a flexible metal-binding site in the high-resolution crystal structure. Furthermore, the H52A/H58E/F104W mutant accommodated a water molecule, which was supported by Glu58 and Trp104 residues via hydrogen bonding, presumably leading to high stereoselectivity. Thus, the 2-His-1-carboxylate facial triad was confirmed to be a versatile and promising metal-binding motif for abiological and canonical biological reactions.

14.
J Mol Biol ; 435(14): 168021, 2023 07 15.
Article de Anglais | MEDLINE | ID: mdl-36828268

RÉSUMÉ

ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crystallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data framework for representing computed structure models (CSMs) accelerates the pace of scientific discovery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and processes for maintaining and extending the data standard. Community tools and software libraries that support ModelCIF are also described.


Sujet(s)
Bases de données de protéines , Structures macromoléculaires/composition chimique , Conformation des protéines , Logiciel
15.
Nucleic Acids Res ; 51(D1): D368-D376, 2023 01 06.
Article de Anglais | MEDLINE | ID: mdl-36478084

RÉSUMÉ

The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).


Sujet(s)
Bases de données chimiques , Spectroscopie par résonance magnétique , Bases de données de protéines , Résonance magnétique nucléaire biomoléculaire , Conformation des protéines
16.
Biophys Rev ; 14(6): 1233-1238, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36532871

RÉSUMÉ

Prof. Haruki Nakamura, who is the former head of Protein Data Bank Japan (PDBj) and an expert in computational biology, retired from Osaka University at the end of March 2018. He founded PDBj at the Institute for Protein Research, together with other faculty members, researchers, engineers, and annotators in 2000, and subsequently established the worldwide Protein Data Bank (wwPDB) in 2003 to manage the core archive of the Protein Data Bank (PDB), collaborating with RCSB-PDB in the USA and PDBe in Europe. As the former head of PDBj and also an expert in structural bioinformatics, he has grown PDBj to become a well-known data center within the structural biology community and developed several related databases, tools and integrated with new technologies, such as the semantic web, as primary services offered by PDBj.

17.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-36555561

RÉSUMÉ

"Plant-type" ferredoxins (Fds) in the thylakoid membranes of plants, algae, and cyanobacteria possess a single [2Fe-2S] cluster in active sites and mediate light-induced electron transfer from Photosystem I reaction centers to various Fd-dependent enzymes. Structural knowledge of plant-type Fds is relatively limited to static structures, and the detailed behavior of oxidized and reduced Fds has not been fully elucidated. It is important that the investigations of the effects of active-center reduction on the structures and dynamics for elucidating electron-transfer mechanisms. In this study, model systems of oxidized and reduced Fds were constructed from the high-resolution crystal structure of Chlamydomonas reinhardtii Fd1, and three 200 ns molecular dynamics simulations were performed for each system. The force field parameters of the oxidized and reduced active centers were independently obtained using quantum chemical calculations. There were no substantial differences in the global conformations of the oxidized and reduced forms. In contrast, active-center reduction affected the hydrogen-bond network and compactness of the surrounding residues, leading to the increased flexibility of the side chain of Phe61, which is essential for the interaction between Fd and the target protein. These computational results will provide insight into the electron-transfer mechanisms in the Fds.


Sujet(s)
Cyanobactéries , Ferrédoxines , Ferrédoxines/métabolisme , Simulation de dynamique moléculaire , Transport d'électrons , Cyanobactéries/métabolisme , Plantes/métabolisme , Oxydoréduction
18.
Commun Biol ; 5(1): 951, 2022 09 12.
Article de Anglais | MEDLINE | ID: mdl-36097054

RÉSUMÉ

Photosystem I (PSI) is a light driven electron pump transferring electrons from Cytochrome c6 (Cyt c6) to Ferredoxin (Fd). An understanding of this electron transfer process is hampered by a paucity of structural detail concerning PSI:Fd interface and the possible binding sites of Cyt c6. Here we describe the high resolution cryo-EM structure of Thermosynechococcus elongatus BP-1 PSI in complex with Fd and a loosely bound Cyt c6. Side chain interactions at the PSI:Fd interface including bridging water molecules are visualized in detail. The structure explains the properties of mutants of PsaE and PsaC that affect kinetics of Fd binding and suggests a molecular switch for the dissociation of Fd upon reduction. Calorimetry-based thermodynamic analyses confirms a single binding site for Fd and demonstrates that PSI:Fd complexation is purely driven by entropy. A possible reaction cycle for the efficient transfer of electrons from Cyt c6 to Fd via PSI is proposed.


Sujet(s)
Cyanobactéries , Complexe protéique du photosystème I , Sites de fixation , Cyanobactéries/métabolisme , Transport d'électrons , Ferrédoxines/métabolisme , Complexe protéique du photosystème I/métabolisme
19.
J Biochem ; 173(1): 21-30, 2022 Dec 27.
Article de Anglais | MEDLINE | ID: mdl-36174533

RÉSUMÉ

IMP-type metallo-ß-lactamases confer resistance to carbapenems and a broad spectrum of ß-lactam antibiotics. IMP-6 and IMP-1 differ by only a point mutation: Ser262 in IMP-1 and Gly262 in IMP-6. The kcat/Km values of IMP-1 for imipenem and meropenem are nearly identical; however, for IMP-6, the kcat/Km for meropenem is 7-fold that for imipenem. In clinical practice, this may result in an ineffective therapeutic regimen and, consequently, in treatment failure. Here, we report the crystal structures of IMP-6 and IMP-1 with the same space group and similar cell constants at resolutions of 1.70 and 1.94 Å, respectively. The overall structures of IMP-6 and IMP-1 are similar. However, the loop region (residues 60-66), which participates in substrate binding, is more flexible in IMP-6 than in IMP-1. This difference in flexibility determines the substrate specificity of IMP-type metallo-ß-lactamases for imipenem and meropenem. The amino acid at position 262 alters the mobility of His263; this affects the flexibility of the loop via a hydrogen bond with Pro68, which plays the role of a hinge in IMP-type metallo-ß-lactamases. The substitution of Pro68 with a glycine elicited an increase in the Km of IMP-6 for imipenem, whereas the affinity for meropenem remained unchanged.


Sujet(s)
Imipénem , bêta-Lactamases , Méropénème , Spécificité du substrat , bêta-Lactamases/génétique , bêta-Lactamases/composition chimique , bêta-Lactamases/métabolisme , Imipénem/pharmacologie , Carbapénèmes/pharmacologie , Antibactériens/pharmacologie , Tests de sensibilité microbienne
20.
Protein Sci ; 31(10): e4430, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-36173179

RÉSUMÉ

Chlorophyll degradation plays a myriad of physiological roles in photosynthetic organisms, including acclimation to light environment and nutrient remobilization during senescence. Mg extraction from chlorophyll a is the first and committed step of the chlorophyll degradation pathway. This reaction is catalyzed by the Mg-dechelatase enzyme encoded by Stay-Green (SGR). The reaction mechanism of SGR protein remains elusive since metal ion extraction from organic molecules is not a common enzymatic reaction. Additionally, experimentally derived structural information about SGR or its homologs has not yet been reported. In this study, the crystal structure of the SGR homolog from Anaerolineae bacterium was determined using the molecular replacement method at 1.85 Å resolution. Our previous study showed that three residues-H32, D34, and D62 are essential for the catalytic activity of the enzyme. Biochemical analysis involving mutants of D34 residue further strengthened its importance in the functioning of the dechelatase. Docking simulation also revealed the interaction between the D34 side chain and central Mg ion of chlorophyll a. Structural analysis showed the arrangement of D34/H32/D62 in the form of a catalytic triad that is generally found in hydrolases. The probable reaction mechanism suggests that deprotonated D34 side chain coordinates and destabilizes Mg, resulting in Mg extraction. Besides, H32 possibly acts as a general base catalyst and D62 facilitates H32 to be a better proton acceptor. Taken together, the reaction mechanism of SGR partially mirrors the one observed in hydrolases.


Sujet(s)
Chloroflexi , Chloroflexi/métabolisme , Chlorophylle , Chlorophylle A , Enzymes , Hydrolases , Protons
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...