Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Gamme d'année
1.
Biosci. j. (Online) ; 38: e38039, Jan.-Dec. 2022. graf
Article de Anglais | LILACS | ID: biblio-1395957

RÉSUMÉ

Enzymes of the archaea living in extreme environments are resistant to the challenging conditions. Lipase is among the important enzymes used in the industry and agriculture. In this study, the extracellular lipase from extremely halophilic archaeon Halolamina sp. was characterized for the first time. Optimum temperature for the enzyme activity was determined as 70oC, optimum pH was 7.0, and the optimum salt concentration was 3.6 M. Additionally, more than 70% of the enzyme activity was remained between pH 3.0-10.0 for 48 h as well as incubation of the enzyme at 70oC for 30 min increased its activity for 44%, and no activity loss was observed after incubation at 80oC. Also, presence of the metals increased the enzyme activity up to 88%. The enzyme was highly resistant to the organic solvents acetone, methanol, and DMSO while strong inhibition was caused by n-butanol. Among the detergents, the enzyme kept its activity substantially in the presence of SDS; however, other detergents caused inhibition of the enzyme activity. This characterization study showed that the lipase from the haloarchaeon Halolamina sp. is highly stable at the wide ranges of temperature and pH values as well as in the presence of diverse inhibitors. This enzyme is promising to be used in biotechnological applications.


Sujet(s)
Stabilité enzymatique , Halobacteriales , Archéobactéries , Triacylglycerol lipase
2.
Braz J Microbiol ; 51(2): 547-556, 2020 Jun.
Article de Anglais | MEDLINE | ID: mdl-31833007

RÉSUMÉ

lysA gene encoding meso-diaminopimelic acid (DAP) decarboxylase enzyme that catalyzes L-lysine biosynthesis in the aspartate pathway in Streptomyces clavuligerus was overexpressed, and its effects on cephamycin C (CephC), clavulanic acid (CA), and tunicamycin productions were investigated. Multicopy expression of lysA gene under the control of glpF promoter (glpFp) in S. clavuligerus pCOlysA led to higher expression levels ranging from 2- to 6-fold increase at both lysA gene and CephC biosynthetic gene cluster at T36 and T48 of TSBG fermentation. These results accorded well with CephC production. Thus, 1.86- and 3.14-fold higher volumetric as well as 1.26- and 1.71-fold increased specific CephC yields were recorded in S. clavuligerus pCOlysA in comparison with the wild-type and its control strain, respectively, at 48th h. Increasing the expression of lysA provided 4.3 times more tunicamycin yields in the recombinant strain. These findings suggested that lysA overexpression in S. clavuligerus made the strain more productive for CephC and tunicamycin. The results also supported the presence of complex interactions among antibiotic biosynthesis pathways in S. clavuligerus.


Sujet(s)
Antibactériens/biosynthèse , Carboxy-lyases/génétique , Streptomyces/enzymologie , Streptomyces/génétique , Protéines bactériennes/génétique , Régulation de l'expression des gènes bactériens , Famille multigénique , Régions promotrices (génétique)
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE