Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210074, 2023 01 02.
Article de Anglais | MEDLINE | ID: mdl-36373919

RÉSUMÉ

The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Sujet(s)
Écosystème , Sol , Sol/composition chimique , Argile , Forêts , Carbone
3.
New Phytol ; 232(1): 42-59, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34197626

RÉSUMÉ

Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.


Sujet(s)
Écosystème , Plantes , Phénotype , Feuilles de plante
4.
Nat Ecol Evol ; 5(8): 1123-1134, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34112996

RÉSUMÉ

Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change.


Sujet(s)
Forêts , Dispersion des plantes , Climat , Phénotype , Eau
5.
Sci Adv ; 6(27)2020 07.
Article de Anglais | MEDLINE | ID: mdl-32937432

RÉSUMÉ

Plant economics run on carbon and nutrients instead of money. Leaf strategies aboveground span an economic spectrum from "live fast and die young" to "slow and steady," but the economy defined by root strategies belowground remains unclear. Here, we take a holistic view of the belowground economy and show that root-mycorrhizal collaboration can short circuit a one-dimensional economic spectrum, providing an entire space of economic possibilities. Root trait data from 1810 species across the globe confirm a classical fast-slow "conservation" gradient but show that most variation is explained by an orthogonal "collaboration" gradient, ranging from "do-it-yourself" resource uptake to "outsourcing" of resource uptake to mycorrhizal fungi. This broadened "root economics space" provides a solid foundation for predictive understanding of belowground responses to changing environmental conditions.

6.
FEMS Microbiol Ecol ; 67(3): 389-96, 2009 Mar.
Article de Anglais | MEDLINE | ID: mdl-19159421

RÉSUMÉ

Soil biological studies are often conducted on sieved soils without the presence of plants. However, soil fungi build delicate mycelial networks, often symbiotically associated with plant roots (mycorrhizal fungi). We hypothesized that as a result of sieving and incubating without plants, the total fungal biomass decreases. To test this, we conducted three incubation experiments. We expected total and arbuscular mycorrhizal (AM) fungal biomass to be higher in less fertilized soils than in fertilized soils, and thus to decrease more during incubation. Indeed, we found that fungal biomass decreased rapidly in the less fertilized soils. A shift towards thicker hyphae occurred, and the fraction of septate hyphae increased. However, analyses of phospholipid fatty acids (PLFAs) and neutral lipid fatty acids could not clarify which fungal groups were decreasing. We propose that in our soils, there was a fraction of fungal biomass that was sensitive to fertilization and disturbance (sieving, followed by incubation without plants) with a very high turnover (possibly composed of fine hyphae of AM and saprotrophic fungi), and a fraction that was much less vulnerable with a low turnover (composed of saprotrophic fungi and runner hyphae of AMF). Furthermore, PLFAs might not be as sensitive in detecting changes in fungal biomass as previously thought.


Sujet(s)
Biomasse , Hyphae/croissance et développement , Mycorhizes/croissance et développement , Microbiologie du sol , Acides gras/analyse , Hyphae/métabolisme , Mycorhizes/métabolisme , Phospholipides/analyse , Racines de plante/microbiologie
7.
Appl Environ Microbiol ; 69(1): 327-33, 2003 Jan.
Article de Anglais | MEDLINE | ID: mdl-12514012

RÉSUMÉ

Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (> or = 99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had > or = 98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil.


Sujet(s)
Basidiomycota/classification , ADN fongique/analyse , Mycorhizes , Picea/microbiologie , Pinus/microbiologie , Microbiologie du sol , Basidiomycota/génétique , ADN fongique/isolement et purification , Données de séquences moléculaires , Phylogenèse , Racines de plante/microbiologie , Analyse de séquence d'ADN , Sol/analyse
8.
FEMS Microbiol Ecol ; 45(3): 283-92, 2003 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-19719597

RÉSUMÉ

Mycelial biomass estimates in soils are usually obtained by measuring total hyphal length or by measuring the amount of fungal-specific biomarkers such as ergosterol and phospholipid fatty acids (PLFAs). These methods determine the biomass of the fungal community as a whole and do not allow species-specific identification. Molecular methods based on the extraction of total soil DNA and the use of genes as biomarkers enable identification of mycelia directly from the environment. Three molecular techniques were compared to determine the most reliable method for determining the biomass of individual fungal species in soil. The growth of extramatrical mycelium of two ectomycorrhizal (EM) fungal species (Suillus bovinus and Paxillus involutus) in soil was monitored by denaturing gradient gel electrophoresis, a cloning technique and real-time quantitative polymerase chain reaction, and the results were compared with those obtained with hyphal length determination and PLFA analysis. The molecular methods enabled identification and relative quantification of both species separately in an environment with several fungal species present and showed consistent results. Amounts of target DNA per gram soil were used to quantitatively compare soil samples. Increasing amounts of S. bovinus DNA and decreasing amounts of P. involutus DNA were detected over time in an environment containing a more complex community. This work demonstrates that molecular methods provide tools to determine the biomass of individual fungal species in soil.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE