Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Plant Sci ; 2: 117, 2011.
Article de Anglais | MEDLINE | ID: mdl-22629271

RÉSUMÉ

Here we present the first study, in which a large number of different vascular epiphyte species were measured for their photosynthetic performance in the natural environment of their phorophyte in the lowland rainforest of French Guyana. More than 70 epiphyte species covered the host tree in a dense cover. Of these, the photosynthesis of 16 abundant species was analyzed intensely over several months. Moreover, the light environment was characterized with newly developed light sensors that recorded continuously and with high temporal resolution light intensity next to the epiphytes. Light intensity was highly fluctuating and showed great site specific spatio-temporal variations of photosynthetic photon flux. Using a novel computer routine we quantified the integrated light intensity the epiphytes were exposed to in a 3 h window and we related this light intensity to measurements of the actual photosynthetic status. It could be shown that the photosynthetic apparatus of the epiphytes was well adapted to the quickly changing light conditions. Some of the epiphytes were chronically photoinhibited at predawn and significant acute photoinhibition, expressed by a reduction of potential quantum efficiency (F(v)/F(m))(30'), was observed during the day. By correlating (F(v)/F(m))(30') to the integrated and weighted light intensity perceived during the previous 3 h, it became clear that acute photoinhibition was related to light environment prior to the measurements. Additionally photosynthetic performance was not determined by rain events, with the exception of an Aechmea species. This holds true for all the other 15 species of this study and we thus conclude that actual photosynthesis of these tropical epiphytes was determined by the specific and fluctuating light conditions of their microhabitat and cannot be simply attributed to light-adapted ancestors.

2.
J Plant Physiol ; 164(7): 904-12, 2007 Jul.
Article de Anglais | MEDLINE | ID: mdl-16781797

RÉSUMÉ

Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C(3)-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem II level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4M NaCl salinity or high irradiance of 1000 micromol m(-2)s(-1), as well as to both stress factors combined (LLSA=low light plus salt; HLCO=high light of 1000 micromol m(-2)s(-1), no salt; HLSA=high light plus salt). A control of LLCO=low light of 200 micromol m(-2)s(-1), no salt was used. Parameters of chlorophyll a fluorescence of photosystem II (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Deltamalate) of approximately 12mM in the course of the experiment, while HLSA induced stronger CAM of Deltamalate approximately 20 mM. Effective quantum yield of PSII, DeltaF/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F(v)/F(m), at predawn times was not affected by any of the conditions, always remaining at 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (<0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETR(max), declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that M. crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and light irradiance stress combined.


Sujet(s)
Chlorophylle/métabolisme , Lumière , Mesembryanthemum/métabolisme , Chlorure de sodium/pharmacologie , Chlorophylle/effets des radiations , Fluorescence , Malates/métabolisme , Mesembryanthemum/effets des médicaments et des substances chimiques , Mesembryanthemum/effets des radiations , Photosynthèse , Complexe protéique du photosystème II/métabolisme
3.
New Phytol ; 171(1): 7-25, 2006.
Article de Anglais | MEDLINE | ID: mdl-16771979

RÉSUMÉ

The discovery of crassulacean acid metabolism (CAM) in the trees of Clusia: arrival in the limelight of international research 8 II. Phylogeny 8 III. Photosynthetic physiotypes 10 IV. Metabolic flexibility: organic acid variations 12 V. The environmental control of photosynthetic flexibility 13 VI. Phenotypic plasticity: physiotypes and morphotypes 16 VII. Ecological amplitude and habitat impact 16 VIII. Conclusions and outlook 21 Acknowledgements 22 References 22 Summary It is the aim of this review to present a monographic survey of the neotropical genus Clusia on scaling levels from molecular phylogeny, metabolism, photosynthesis and autecological environmental responses to ecological amplitude and synecological habitat impact. Clusia is the only dicotyledonous genus with real trees performing crassulacean acid metabolism (CAM). By way of introduction, a brief historical reminiscence describes the discovery of CAM in Clusia and the consequent increase in interest in studying this particular genus of tropical shrubs and trees. The molecular phylogeny of CAM in the genus is compared with that in Kalanchoë and the Bromeliaceae. At the level of metabolism and photosynthesis, the great plasticity of expression of photosynthetic physiotypes, i.e. (i) C(3) photosynthesis, (ii) CAM including CAM idling, (iii) CAM cycling and (iv) C(3)/CAM-intermediate behaviour, as well as metabolic flexibility in Clusia is illustrated. At the level of autecology, the factors water, irradiance and temperature, which control photosynthetic flexibility, are assessed. The phenotypic plasticity of physiotypes and morphotypes is described. At the level of synecology, the ecological amplitude of Clusia in the tropics and the relations to habitat are surveyed.


Sujet(s)
Carbone/métabolisme , Clusia/physiologie , Écosystème , Photosynthèse/physiologie , Climat tropical , Brésil , Acide citrique/métabolisme , Clusia/anatomie et histologie , Clusia/métabolisme , Lumière , Malates/métabolisme , Panama , Phylogenèse , Trinité-et-Tobago , Venezuela
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE