Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
MAbs ; 16(1): 2383013, 2024.
Article de Anglais | MEDLINE | ID: mdl-39051531

RÉSUMÉ

Targeting antigens with antibodies exhibiting pH/Ca2+-dependent binding against an antigen is an attractive strategy to mitigate target-mediated disposition and antigen buffering. Studies have reported improved serum exposure of antibodies exhibiting pH/Ca2+-binding against membrane-bound receptors. Asialoglycoprotein receptor 1 (ASGR1) is a membrane-bound receptor primarily localized in hepatocytes. With a high expression level of approximately one million receptors per cell, high turnover, and rapid recycling, targeting this receptor with a conventional antibody is a challenge. In this study, we identified an antibody exhibiting pH/Ca2+-dependent binding to ASGR1 and generated antibody variants with increased binding to neonatal crystallizable fragment receptor (FcRn). Serum exposures of the generated anti-ASGR1 antibodies were analyzed in transgenic mice expressing human FcRn. Contrary to published reports of increased serum exposure of pH/Ca2+-dependent antibodies, the pH/Ca2+-dependent anti-ASGR1 antibody had rapid serum clearance in comparison to a conventional anti-ASGR1 antibody. We conducted sub-cellular trafficking studies of the anti-ASGR1 antibodies along with receptor quantification analysis for mechanistic understanding of the rapid serum clearance of pH/Ca2+-dependent anti-ASGR1 antibody. The findings from our study provide valuable insights in identifying the antigens, especially membrane bound, that may benefit from targeting with pH/Ca2+-dependent antibodies to obtain increased serum exposure.


Sujet(s)
Récepteurs des asialoglycoprotéines , Antigènes d'histocompatibilité de classe I , Souris transgéniques , Récepteur Fc , Animaux , Humains , Récepteurs des asialoglycoprotéines/immunologie , Récepteurs des asialoglycoprotéines/métabolisme , Souris , Récepteur Fc/immunologie , Récepteur Fc/génétique , Récepteur Fc/métabolisme , Antigènes d'histocompatibilité de classe I/immunologie , Antigènes d'histocompatibilité de classe I/génétique , Concentration en ions d'hydrogène , Anticorps monoclonaux/immunologie , Calcium/métabolisme
2.
BBA Adv ; 1: 100022, 2021.
Article de Anglais | MEDLINE | ID: mdl-37082021

RÉSUMÉ

The fundamental importance of membrane protein (MP) targets in central biological and cellular events has driven a marked increase in the use of membrane mimetics for exploring these proteins as therapeutic targets. The main challenge associated with biophysical analysis of membrane protein is the need for detergent extraction from the bilayer environment, which in many cases causes the proteins to become insoluble, unstable or display altered structure or activity. Recent technological advances have tried to limit the exposure of purified membrane protein to detergents. One such method involves the amphipathic co-polymer of styrene and maleic acid (SMA), which can release lipids and integral membrane proteins into water soluble native particles (or vesicles) termed SMALPs (Styrene Maleic Acid Lipid Particles). In this study, assay conditions that leverage SMA for membrane protein stabilization were developed to perform kinetic analysis of antibody binding to integral membrane protein and complexes in SMALPs in both purified and complex mixture settings using multiple biosensor platforms. To develop a robust and flexible platform using SMALPs technology, we optimized various SPR assay formats to analyze SMALPs produced with cell membrane pellets as well as whole cell lysates from the cell lines overexpressing membrane protein of interest. Here we emphasize the extraction of model membrane proteins of diverse architecture and function from native environments to encapsulate with SMALPs. Given the importance of selected membrane targets in central biological events and therapeutic relevance, MP-specific or tag-specific antibodies were used as a proof-of-principal to validate the SMALPs platform for ligand binding studies to support drug discovery or tool generation processes. MP-SMALPs that retain specific binding capability in multiple assay formats and biosensors, such as waveguide interferometry and surface plasmon resonance, would be a versatile platform for a wide range of downstream applications.

3.
Proc Natl Acad Sci U S A ; 112(46): 14360-5, 2015 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-26578783

RÉSUMÉ

Secretory proteins traffic from endoplasmic reticulum (ER) to Golgi via the coat protein complex II (COPII) vesicle, which consists of five cytosolic components (Sar1, Sec23-24, and Sec13-31). In eukaryotes, COPII transport has diversified due to gene duplication, creating multiple COPII paralogs. Evidence has accumulated, revealing the functional heterogeneity of COPII paralogs in protein ER export. Sar1B, the small GTPase of COPII machinery, seems to be specialized for large cargo secretion in mammals. Arabidopsis contains five Sar1 and seven Sec23 homologs, and AtSar1a was previously shown to exhibit different effects on α-amylase secretion. However, mechanisms underlying the functional diversity of Sar1 paralogs remain unclear in higher organisms. Here, we show that the Arabidopsis Sar1 homolog AtSar1a exhibits distinct localization in plant cells. Transgenic Arabidopsis plants expressing dominant-negative AtSar1a exhibit distinct effects on ER cargo export. Mutagenesis analysis identified a single amino acid, Cys84, as being responsible for the functional diversity of AtSar1a. Structure homology modeling and interaction studies revealed that Cys84 is crucial for the specific interaction of AtSar1a with AtSec23a, a distinct Arabidopsis Sec23 homolog. Structure modeling and coimmunoprecipitation further identified a corresponding amino acid, Cys484, on AtSec23a as being essential for the specific pair formation. At the cellular level, the Cys484 mutation affects the distinct function of AtSec23a on vacuolar cargo trafficking. Additionally, dominant-negative AtSar1a affects the ER export of the transcription factor bZIP28 under ER stress. We have demonstrated a unique plant pair of COPII machinery function in ER export and the mechanism underlying the functional diversity of COPII paralogs in eukaryotes.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Réticulum endoplasmique/métabolisme , Protéines du transport vésiculaire/métabolisme , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Réticulum endoplasmique/génétique , Stress du réticulum endoplasmique/physiologie , Modèles moléculaires , Mutation faux-sens , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/métabolisme , Transport des protéines/physiologie , Protéines du transport vésiculaire/génétique
4.
Plant Cell ; 25(11): 4596-615, 2013 Nov.
Article de Anglais | MEDLINE | ID: mdl-24249832

RÉSUMÉ

Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain-containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2-green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum-derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/physiologie , Autophagie/physiologie , Protéines de transport/métabolisme , Phagosomes/métabolisme , Phosphates phosphatidylinositol/métabolisme , Androstadiènes/pharmacologie , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/croissance et développement , Protéines d'Arabidopsis/génétique , Protéines de transport/génétique , Réticulum endoplasmique/métabolisme , Protéines à fluorescence verte/métabolisme , Phagosomes/génétique , Phagosomes/ultrastructure , Phosphatidylinositol 3-kinases/métabolisme , Inhibiteurs des phosphoinositide-3 kinases , Végétaux génétiquement modifiés , Wortmannine
5.
Cold Spring Harb Perspect Biol ; 5(5): a013243, 2013 May 01.
Article de Anglais | MEDLINE | ID: mdl-23637287

RÉSUMÉ

Peroxisomes are essential cellular organelles involved in lipid metabolism. Patients affected by severe peroxisome biogenesis disorders rarely survive their first year. Genetic screens in several model organisms have identified more than 30 PEX genes that are required for the formation of functional peroxisomes. Despite significant work on the PEX genes, the biogenic origin of peroxisomes remains controversial. For at least two decades, the prevailing model postulated that peroxisomes propagate by growth and fission of preexisting peroxisomes. In this review, we focus on the recent evidence supporting a new, semiautonomous model of peroxisomal biogenesis. According to this model, peroxisomal membrane proteins (PMPs) traffic from the endoplasmic reticulum (ER) to the peroxisome by a vesicular budding, targeting, and fusion process while peroxisomal matrix proteins are imported into the organelle by an autonomous, posttranslational mechanism. We highlight the contradictory conclusions reached to answer the question of how PMPs are inserted into the ER. We then review what we know and what still remains to be elucidated about the mechanism of PMP exit from the ER and the contribution of preperoxisomal vesicles to mature peroxisomes. Finally, we discuss discrepancies in our understanding of de novo peroxisome biogenesis in wild-type cells. We anticipate that resolving these key issues will lead to a more complete picture of peroxisome biogenesis.


Sujet(s)
Réticulum endoplasmique/physiologie , Péroxysomes/métabolisme , Réticulum endoplasmique/métabolisme , Membranes intracellulaires/métabolisme , Métabolisme lipidique , Protéines membranaires/métabolisme , Protéines membranaires/physiologie , Transport des protéines
6.
J Cell Sci ; 126(Pt 10): 2151-6, 2013 May 15.
Article de Anglais | MEDLINE | ID: mdl-23525003

RÉSUMÉ

Trafficking of the chitin synthase Chs2p from the endoplasmic reticulum (ER) to the bud-neck in late mitosis is tightly regulated by the cell cycle via phosphorylation of serine residues in the N-terminus of the protein. Here, we describe the effects of Chs2p phosphorylation on the interaction with coat protein complex II (COPII). Identification of a cdc5(ts) mutant, which fails to transport Chs2p-3xGFP to the bud-neck and instead accumulates the protein in intracellular puncta, led us to discover that Chs2p-3xGFP accumulates at ER exit sites in metaphase-arrested wild-type cells. Using an in vitro ER vesicle formation assay we showed that phosphorylation of Chs2p by the cyclin-dependent kinase CDK1 prevents packaging into COPII vesicles, whereas dephosphorylation of Chs2p by the phosphatase Cdc14p stimulates selection into the vesicles. We found that the cytoplasmic N-terminal domain of Chs2p, which contains the CDK1 phosphorylation sites, interacts with the COPII component Sec24p in a yeast two-hybrid assay and that phosphomimetic substitutions of serines at the CDK1 consensus sites reduces the interaction. Our data suggest that dephosphorylation functions as a molecular switch for regulated ER exit of Chs2p.


Sujet(s)
Protéine-kinase CDC2/métabolisme , Vésicules COP/physiologie , Chitine synthase/métabolisme , Réticulum endoplasmique/métabolisme , Protéines membranaires/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Biomimétique , Cycle cellulaire , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Chitine synthase/génétique , Génie génétique , Protéines membranaires/génétique , Mutation/génétique , Phosphorylation/génétique , Liaison aux protéines , Transport des protéines/génétique , Protein Tyrosine Phosphatases/génétique , Protein Tyrosine Phosphatases/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Techniques de double hybride , Protéines du transport vésiculaire
7.
Traffic ; 13(7): 1023-40, 2012 Jul.
Article de Anglais | MEDLINE | ID: mdl-22486829

RÉSUMÉ

In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.


Sujet(s)
Protéines membranaires/métabolisme , Protéines végétales/métabolisme , Vacuoles/métabolisme , Réseau trans-golgien/métabolisme , Androstadiènes/pharmacologie , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Fusion cellulaire , Lignée cellulaire , Protéines membranaires/effets des médicaments et des substances chimiques , Corps multivésiculaires/métabolisme , Oryza , Protéines végétales/effets des médicaments et des substances chimiques , Inhibiteurs de protéines kinases/pharmacologie , Transport des protéines , Protéolyse , Nicotiana/génétique , Ubiquitination , Wortmannine , Protéines G rab/génétique
9.
Plant J ; 65(6): 882-96, 2011 Mar.
Article de Anglais | MEDLINE | ID: mdl-21251105

RÉSUMÉ

How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.


Sujet(s)
Protéines de transport/métabolisme , Protéines membranaires/métabolisme , Protéines végétales/métabolisme , Protéines de transport/composition chimique , Protéines de transport/génétique , Lignée cellulaire , Membrane cellulaire/métabolisme , Cytosol/métabolisme , Réticulum endoplasmique/métabolisme , Gènes de plante , Appareil de Golgi/métabolisme , Protéines membranaires/composition chimique , Protéines membranaires/génétique , Modèles biologiques , Oryza/génétique , Oryza/métabolisme , Protéines végétales/composition chimique , Protéines végétales/génétique , Végétaux génétiquement modifiés , Signaux de triage des protéines , Structure tertiaire des protéines , Transport des protéines , Protéines de fusion recombinantes/composition chimique , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Délétion de séquence , Transduction du signal , Nicotiana/génétique , Nicotiana/métabolisme , Réseau trans-golgien/métabolisme
10.
Proc Natl Acad Sci U S A ; 107(50): 21523-8, 2010 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-21098289

RÉSUMÉ

Pex19p, a soluble cytoplasmic transport protein, is required for the traffic of the peroxisomal membrane proteins Pex3p and Pex15p from the endoplasmic reticulum (ER) to the peroxisome. We documented Pex15p traffic from the ER using a chimeric protein containing a C-terminal glycosylation acceptor peptide. Pex15Gp expressed in wild-type yeast cells is N-glycosylated and functions properly in the peroxisome. In contrast, pex19Δ-mutant cells accumulate the glycoprotein Pex15Gp in the ER. We developed a cell-free preperoxisomal vesicle-budding reaction in which Pex15Gp and Pex3p are packaged into small vesicles in the presence of cytosol, Pex19p, and ATP. Secretory vesicle budding (COPII) detected by the packaging of a SNARE protein (soluble N-ethylmaleimide-sensitive attachment protein receptor) occurs in the same incubation but does not depend on Pex19p. Conversely a dominant GTPase mutant Sar1p which inhibits COPII has no effect on Pex3p packaging. Pex15Gp and Pex3p budded vesicles sediment as low-buoyant-density membranes on a Nycodenz gradient and copurify by affinity isolation using native but not Triton X-100-treated budded vesicles. ER-peroxisome transport vesicles appear to rely on a novel budding mechanism requiring Pex19p and additional unknown factors.


Sujet(s)
Réticulum endoplasmique/métabolisme , Protéines membranaires/métabolisme , Péroxysomes/métabolisme , Phosphoprotéines/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines du transport vésiculaire/métabolisme , Transport biologique , Protéines membranaires/génétique , Péroxines , Phosphoprotéines/génétique , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Fractions subcellulaires/composition chimique , Protéines du transport vésiculaire/génétique
11.
Plant J ; 60(5): 865-81, 2009 Dec.
Article de Anglais | MEDLINE | ID: mdl-19709389

RÉSUMÉ

Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5-10 microg ml(-1)), BFA caused both the Golgi apparatus and trans-Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY-2 cells. Here we show that these BFA-induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA-induced Golgi- and TGN-derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4-64 co-localized with the TGN-derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose- and time-dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4-64 are mostly excluded from the SYP61-positive BFA-induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE-derived BFA-induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.


Sujet(s)
Bréfeldine A/pharmacologie , Appareil de Golgi/effets des médicaments et des substances chimiques , Nicotiana/effets des médicaments et des substances chimiques , Cellules cultivées , Endosomes/métabolisme , Appareil de Golgi/métabolisme , Appareil de Golgi/ultrastructure , Données de séquences moléculaires , Protéines végétales/analyse , Protéines végétales/métabolisme , Transport des protéines/physiologie , Composés de pyridinium/analyse , Composés d'ammonium quaternaire/analyse , Nicotiana/ultrastructure , Tyrphostines/pharmacologie , Réseau trans-golgien/effets des médicaments et des substances chimiques , Réseau trans-golgien/métabolisme , Réseau trans-golgien/ultrastructure
12.
J Exp Bot ; 60(11): 3075-83, 2009.
Article de Anglais | MEDLINE | ID: mdl-19436047

RÉSUMÉ

Wortmannin, a specific inhibitor of phosphatidyl-inositol 3-kinase, is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. It has recently been demonstrated that wortmannin at 16.5 microM or 33 microM caused the prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs) by their enrichment in vacuolar sorting receptor (VSRs) proteins and the BP-80 reporter, to form small vacuoles rapidly. However, the source(s) of the membrane needed for the rapid enlargement of PVCs/MVBs has been unclear. Using both confocal immunofluorescence and immunogold EM with high pressure freeze substitution of plant samples, it has been demonstrated here that wortmannin induces homotypic fusions of PVCs/MVBs thus providing an explanation for the demand for extra membrane. In addition, possible wortmannin-induced fusions between the trans-Golgi network (TGN) and PVC, as well as between the small internal vesicles and PVC membrane, were also observed and they may also contribute to the membranes needed for PVC enlargement. In contrast to mammalian cells and yeast, wortmannin-induced fusion of PVCs appears to be unique to plants.


Sujet(s)
Androstadiènes/pharmacologie , Endosomes/physiologie , Fusion membranaire/effets des médicaments et des substances chimiques , Vacuoles/physiologie , Lignée cellulaire , Endosomes/effets des médicaments et des substances chimiques , Endosomes/ultrastructure , Nicotiana/effets des médicaments et des substances chimiques , Nicotiana/physiologie , Nicotiana/ultrastructure , Vacuoles/effets des médicaments et des substances chimiques , Vacuoles/ultrastructure , Wortmannine
13.
Plant Physiol ; 147(4): 1637-45, 2008 Aug.
Article de Anglais | MEDLINE | ID: mdl-18508957

RÉSUMÉ

We previously demonstrated that rice (Oryza sativa) SECRETORY CARRIER MEMBRANE PROTEIN1 (OsSCAMP1)-yellow fluorescent protein in transgenic tobacco (Nicotiana tabacum) Bright Yellow-2 cells locates to the plasma membrane and to motile punctate structures, which represent the trans-Golgi network/early endosome and are tubular-vesicular in nature. Here, we now show that SCAMPs are diverted to the cell plate during cytokinesis dividing Bright Yellow-2 cells. As cells progress from metaphase to cytokinesis, punctate OsSCAMP1-labeled structures begin to collect in the future division plane. Together with the internalized endosomal marker FM4-64, they then become incorporated into the cell plate as it forms and expands. This was confirmed by immunogold electron microscopy. We also monitored for the Golgi apparatus and the prevacuolar compartment (PVC)/multivesicular body. Golgi stacks tend to accumulate in the vicinity of the division plane, but the signals are clearly separate to the cell plate. The situation with the PVC (labeled by green fluorescent protein-BP-80) is not so clear. Punctate BP-80 signals are seen at the advancing periphery of the cell plate, which was confirmed by immunogold electron microscopy. Specific but weak labeling was observed in the cell plate, but no evidence for a fusion of the PVC/multivesicular body with the cell plate could be obtained. Our data, therefore, support the notion that cell plate formation is mainly a secretory process involving mass incorporation of domains of the trans-Golgi network/early endosome membrane. We regard the involvement of multivesicular late endosomes in this process to be equivocal.


Sujet(s)
Cytocinèse/physiologie , Nicotiana/cytologie , Protéines végétales/physiologie , Protéines du transport vésiculaire/physiologie , Paroi cellulaire/métabolisme , Paroi cellulaire/ultrastructure , Cellules cultivées , Protéines à fluorescence verte/analyse , Microscopie immunoélectronique , Oryza/génétique , Protéines végétales/génétique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés/cytologie , Végétaux génétiquement modifiés/métabolisme , Nicotiana/métabolisme , Nicotiana/ultrastructure , Protéines du transport vésiculaire/génétique , Protéines du transport vésiculaire/métabolisme
14.
Trends Plant Sci ; 12(11): 497-505, 2007 Nov.
Article de Anglais | MEDLINE | ID: mdl-17920331

RÉSUMÉ

Despite significant progress in understanding protein trafficking and compartmentation in plants, the identification and protein compartmentalization for organelles that belong to both the secretory and endocytic pathways have been difficult because protein trafficking has generally been studied separately in these two pathways. However, recent data indicate that the trans-Golgi network serves as an early endosome merging the secretory and endocytic pathways in plant cells. Here, we discuss the proteins identified as markers for post-Golgi compartments in these two pathways and propose that the trans-Golgi network is a pivotal organelle with multiple sorting domains for post-Golgi protein trafficking in plant cells.


Sujet(s)
Endosomes/physiologie , Phénomènes physiologiques des plantes , Endocytose , Endosomes/ultrastructure , Plantes/ultrastructure , Réseau trans-golgien/physiologie , Réseau trans-golgien/ultrastructure
15.
Plant Cell ; 19(1): 296-319, 2007 Jan.
Article de Anglais | MEDLINE | ID: mdl-17209124

RÉSUMÉ

We recently identified multivesicular bodies (MVBs) as prevacuolar compartments (PVCs) in the secretory and endocytic pathways to the lytic vacuole in tobacco (Nicotiana tabacum) BY-2 cells. Secretory carrier membrane proteins (SCAMPs) are post-Golgi, integral membrane proteins mediating endocytosis in animal cells. To define the endocytic pathway in plants, we cloned the rice (Oryza sativa) homolog of animal SCAMP1 and generated transgenic tobacco BY-2 cells expressing yellow fluorescent protein (YFP)-SCAMP1 or SCAMP1-YFP fusions. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that YFP-SCAMP1 fusions and native SCAMP1 localize to the plasma membrane and mobile structures in the cytoplasm of transgenic BY-2 cells. Drug treatments and confocal immunofluorescence studies demonstrated that the punctate cytosolic organelles labeled by YFP-SCAMP1 or SCAMP1 were distinct from the Golgi apparatus and PVCs. SCAMP1-labeled organelles may represent an early endosome because the internalized endocytic markers FM4-64 and AM4-64 reached these organelles before PVCs. In addition, wortmannin caused the redistribution of SCAMP1 from the early endosomes to PVCs, probably as a result of fusions between the two compartments. Immunogold electron microscopy with high-pressure frozen/freeze-substituted samples identified the SCAMP1-positive organelles as tubular-vesicular structures at the trans-Golgi with clathrin coats. These early endosomal compartments resemble the previously described partially coated reticulum and trans-Golgi network in plant cells.


Sujet(s)
Endosomes/métabolisme , Nicotiana/génétique , Oryza/génétique , Protéines végétales/analyse , Protéines du transport vésiculaire/analyse , Séquence d'acides aminés , Androstadiènes/pharmacologie , Marqueurs biologiques , Bréfeldine A/pharmacologie , Lignée cellulaire , Membrane cellulaire/métabolisme , Membrane cellulaire/ultrastructure , Endosomes/ultrastructure , Appareil de Golgi/métabolisme , Immunohistochimie , Données de séquences moléculaires , Organites/classification , Organites/ultrastructure , Protéines végétales/composition chimique , Protéines végétales/métabolisme , Végétaux génétiquement modifiés/effets des médicaments et des substances chimiques , Végétaux génétiquement modifiés/métabolisme , Végétaux génétiquement modifiés/ultrastructure , Composés de pyridinium/analyse , Composés d'ammonium quaternaire/analyse , Protéines de fusion recombinantes/analyse , Alignement de séquences , Nicotiana/ultrastructure , Protéines du transport vésiculaire/composition chimique , Protéines du transport vésiculaire/métabolisme , Wortmannine
16.
Plant Signal Behav ; 2(3): 199-202, 2007 May.
Article de Anglais | MEDLINE | ID: mdl-19704697

RÉSUMÉ

The fungal macrocyclic lactone brefeldin A (BFA) has been a useful tool in studying protein trafficking in the secretory and endocytic pathways in plant cells. The development of various GFP-tagged organelle markers expressed in transgenic plant cells has allowed dynamic study of organelles in response to BFA in living cells. Several organelles including the endoplasmic reticulum (ER), the Golgi apparatus and endosomal compartment have been shown to have visible morphological changes in response to BFA treatment, resulting in the formation of BFA-induced aggregated compartments or ER-Golgi hybrids in various plant cells. Using transgenic tobacco BY-2 cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi apparatus or prevacuolar compartment (PVC), we have recently demonstrated that Golgi and PVC organelles have different sensitivity to BFA, where BFA at recoverable high concentrations (50 to 100 microg/ml) also induced PVC or multivesicular body (MVB) to form aggregates in plant cells. We have thus extended the BFA action to plant PVCs/MVBs, which will serve as a useful tool for studying PVC-mediated protein sorting and PVC biogenesis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE