Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
RSC Adv ; 9(29): 16390-16405, 2019 May 24.
Article de Anglais | MEDLINE | ID: mdl-35516368

RÉSUMÉ

HgTe/CdTe superlattices (SLs), have emerged as unprecedented materials with tremendous functionalities, such as solar photocell devices. We carried out first-principles analyses in the framework of the full-potential linearized augmented plane wave (FP-LAPW) scheme to understand the impact of layer periodicity and strain on HgTe/CdTe superlattices. This technique allows us to describe the electronic and optical features of low dimensional systems, such as CdTe-HgTe heterojunctions. Alteration of the layer thickness and strain is imperative for tailoring the energy band gap of HgTe/CdTe superlattices. Thus, the CdTe and HgTe layers possess an appreciable influence on the induced forbidden gap of SLs because of their distinct quantum confinement characteristics. The electronic structures illustrate that the alteration in HgTe and CdTe layer thickness is pivotal for the overlap or non-overlap of the conduction bands and valence bands. Indeed, these systems can yield a semi-metallic or normal state with significant modification in the optical absorption of HgTe/CdTe SLs with respect to their bulk counterparts. Such SL systems have several advantageous features, involving their tailorable near band edge optical properties. Hence, it is feasible to optimize the requisite characteristics for electronic devices based on these SLs. This may enhance the development of HgTe/CdTe SLs in vast applications envisioned in infrared devices.

2.
Dalton Trans ; 43(14): 5505-15, 2014 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-24535574

RÉSUMÉ

We have performed a theoretical study of silicon carbide nanowires (SiCNWs) within the framework of first-principles calculations by incorporating the size effect and hydrogen terminated surface. Specifically, the variation of the energy gap and optical absorption spectra for hydrogen passivated SiCNWs and pristine wires are examined with respect to the wire diameter. All the [001]-orientated SiCNWs derived from the parent zinc-blende (3C) exhibit semiconducting behavior. Our study demonstrates that the saturated 3C-SiCNWs grown along the [001] direction with larger wire sizes are energetically more favorable than the wires with a smaller diameter. Additionally, the energy gaps are reduced with the increment of wire size because of the quantum-confinement effects. The unsaturated SiCNWs possess smaller band gaps than those of saturated ones when the Si- and C-dangling bonds are passivated by hydrogen atoms. Interestingly, the surface terminated by hydrogen atoms substantially alters the onset of absorption as well as the spectrum behavior at upper energies. Moreover, some pronounced fine structures in the absorption peak are conspicuous at the lower energy region of hydrogen saturated SiCNWs as the wire size increases. We find that the distributions of the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals are uniform along the wire axis, which reveals that the SiCNWs are exceptional candidates in producing nano-optoelectronic devices.

3.
J Comput Chem ; 33(6): 673-84, 2012 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-22173969

RÉSUMÉ

We present the magnetic and optical properties of various combinations of ordered spin state configurations between low-spin (LS) state, intermediate-spin (IS) state, and high-spin (HS) state of LaCoO(3) . In this study, we use the state-of-the-art first principles calculations based on generalized gradient (GGA) + Hubbard U approach. The excited-state properties of different spin configurations of LaCoO(3) such as the X-ray absorption spectra, optical conductivity, reflectivity, and electron energy loss are calculated. We have demonstrated that the optical spectra results can be used for analyzing the spin state of Co(3+) ion. The first specie is the local excitation of IS cobalt ions in the LS ground state. The second excitation leads to the stabilization of the mixed IS/HS Co(3+) metallic state. At low temperature, the comparison between O 2p and Co 3d projected density of states with the experimental valence band spectra indicates significant IS Co(3+) ions and this is in sharp contrast to the HS state which is negligible. The line shape of O 2s and Co 3d core level spectra are well reproduced in this study. The present results are in excellent agreement with the available experimental data. The variation in the spectra of different configurations of LaCoO(3) suggests a changing in the spin state as the temperature is enhanced from 90 to 500 K.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...