Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Nano ; 14(12): 16558-16564, 2020 Dec 22.
Article de Anglais | MEDLINE | ID: mdl-32946215

RÉSUMÉ

There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10-7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices.

2.
ACS Nano ; 14(4): 4682-4688, 2020 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-32186852

RÉSUMÉ

Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral "29" copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals, which expose a continuous distribution of surface orientations as a function of position on the crystal, enable us to systematically investigate the mechanism of chirality transfer between the metal and the surface oxide with high-resolution scanning tunneling microscopy. We discover that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the "29" oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We use this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a "29" oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by slight misorientation of a metal surface (∼1 sites/20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (∼75 sites/20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately "miscut" metal surface.

3.
J Chem Phys ; 151(16): 164705, 2019 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-31675860

RÉSUMÉ

Silver-based heterogeneous catalysts, modified with a range of elements, have found industrial application in several reactions in which selectivity is a challenge. Alloying small amounts of Pt into Ag has the potential to greatly enhance the somewhat low reactivity of Ag while maintaining high selectivity and resilience to poisoning. This single-atom alloy approach has had many successes for other alloy combinations but has yet to be investigated for PtAg. Using scanning tunneling microscopy (STM) and STM-based spectroscopy, we characterized the atomic-scale surface structure of a range of submonolayer amounts of Pt deposited on and in Ag(111) as a function of temperature. Near room temperature, intermixing of PtAg results in multiple metastable structures on the surface. Increasing the alloying temperature results in a higher concentration of isolated Pt atoms in the regions near Ag step edges as well as direct exchange of Pt atoms into Ag terraces. Furthermore, STM-based work function measurements allow us to identify Pt rich areas of the samples. We use CO temperature programmed desorption to confirm our STM assignments and quantify CO binding strengths that are compared with theory. Importantly, we find that CO, a common catalyst poison, binds more weakly to Pt atoms in the Ag surface than extended Pt ensembles. Taken together, this atomic-scale characterization of model PtAg surface alloys provides a starting point to investigate how the size and structure of Pt ensembles affect reaction pathways on the alloy and can inform the design of alloy catalysts with improved catalytic properties and resilience to poisoning.

4.
ACS Nano ; 13(5): 5939-5946, 2019 05 28.
Article de Anglais | MEDLINE | ID: mdl-31070888

RÉSUMÉ

Enantioselective interactions underpin many important phenomena from biological mechanisms to chemical catalysis. In this regard, there is great interest in understanding these effects at the molecular level. Surfaces provide a platform for these studies and aid in the long-term goal of designing heterogeneous enantiospecific interfaces. Herein we report a model system consisting of molecular rotors, one intrinsically chiral (propylene oxide) and one that becomes chiral when adsorbed on a surface (propene). Scanning tunneling microscopy (STM) measurements enable the chirality of each individual molecule to be directly visualized, and density functional theory based calculations are performed to rationalize the chiral time-averaged appearance of the molecular rotors. While there are no attractive intermolecular interactions between the molecular species themselves, when mixed together there is a strong preference for the formation of 1:1 heteromolecular pairs. We demonstrate that STM tip-induced molecular manipulations can be used to assemble these complexes, examine the chirality of each species, and thereby interrogate if their interactions are enantioselective. A statistical analysis of this data reveals that intrinsically chiral propylene oxide preferentially binds one of the enantiomers of propene with a 3:2 ratio, thereby demonstrating that the surface chirality of small nonchiral molecules can be directed with a chiral modifier. As such, this investigation sheds light onto previously reported ensemble studies in which chirally seeded layers of molecules that are achiral in the gas phase can lead to an amplification of enantioselective adsorption.

5.
J Chem Phys ; 149(3): 034703, 2018 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-30037261

RÉSUMÉ

The delicate balance between hydrogen bonding and van der Waals interactions determines the stability, structure, and chirality of many molecular and supramolecular aggregates weakly adsorbed on solid surfaces. Yet the inherent complexity of these systems makes their experimental study at the molecular level very challenging. In this quest, small alcohols adsorbed on metal surfaces have become a useful model system to gain fundamental insight into the interplay of such molecule-surface and molecule-molecule interactions. Here, through a combination of scanning tunneling microscopy and density functional theory, we compare and contrast the adsorption and self-assembly of a range of small alcohols from methanol to butanol on Au(111). We find that longer chained alcohols prefer to form zigzag chains held together by extended hydrogen bonded networks between adjacent molecules. When alcohols bind to a metal surface datively via one of the two lone electron pairs of the oxygen atom, they become chiral. Therefore, the chain structures are formed by a hydrogen-bonded network between adjacent molecules with alternating adsorbed chirality. These chain structures accommodate longer alkyl tails through larger unit cells, while the position of the hydroxyl group within the alcohol molecule can produce denser unit cells that maximize intermolecular interactions. Interestingly, when intrinsic chirality is introduced into the molecule as in the case of 2-butanol, the assembly changes completely and square packing structures with chiral pockets are observed. This is rationalized by the fact that the intrinsic chirality of the molecule directs the chirality of the adsorbed hydroxyl group meaning that heterochiral chain structures cannot form. Overall this study provides a general framework for understanding the effect of simple alcohol molecular adstructures on hydrogen bonded aggregates and paves the way for rationalizing 2D chiral supramolecular assembly.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE