Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Plant Microbe Interact ; 34(11): 1298-1306, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34340534

RÉSUMÉ

Plants resist infection by pathogens using both preexisting barriers and inducible defense responses. Inducible responses are governed in a complex manner by various hormone signaling pathways. The relative contribution of hormone signaling pathways to nonhost resistance to pathogens is not well understood. In this study, we examined the molecular basis of disrupted nonhost resistance to the fungal species Puccinia graminis, which causes stem rust of wheat, in an induced mutant of the model grass Brachypodium distachyon. Through bioinformatic analysis, a 1-bp deletion in the mutant genotype was identified that introduces a premature stop codon in the gene Bradi1g24100, which is a homolog of the Arabidopsis thaliana gene TIME FOR COFFEE (TIC). In Arabidopsis, TIC is central to the regulation of the circadian clock and plays a crucial role in jasmonate signaling by attenuating levels of the transcription factor protein MYC2, and its mutational disruption results in enhanced susceptibility to the hemibiotroph Pseudomonas syringae. Our similar finding for an obligate biotroph suggests that the biochemical role of TIC in mediating disease resistance to biotrophs is conserved in grasses, and that the correct modulation of jasmonate signaling during infection by Puccinia graminis may be essential for nonhost resistance to wheat stem rust in B. distachyon.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Sujet(s)
Arabidopsis , Basidiomycota , Brachypodium , Arabidopsis/génétique , Brachypodium/génétique , Café , Résistance à la maladie/génétique , Maladies des plantes/génétique
2.
Curr Opin Virol ; 49: 58-67, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34051592

RÉSUMÉ

Although giant viruses have existed for millennia and possibly exerted great evolutionary influence in their environment. Their presence has only been noticed by virologists recently with the discovery of Acanthamoeba polyphaga mimivirus in 2003. Its virion with a diameter of 500 nm and its genome larger than 1 Mpb shattered preconceived standards of what a virus is and triggered world-wide prospection studies. Thanks to these investigations many giant virus families were discovered, each with its own morphological peculiarities and genomes ranging from 0.4 to 2.5 Mpb that possibly encode more than 400 viral proteins. This review aims to present the morphological diversity, the different aspects observed in host-virus interactions during replication, as well as the techniques utilized during their investigation.


Sujet(s)
Amoebida/virologie , Virus géants/physiologie , Virus géants/ultrastructure , Interactions hôte-microbes , Acanthamoeba castellanii/virologie , Génome viral , Virus géants/classification , Virus géants/génétique , Protéines virales/génétique , Protéines virales/métabolisme , Compartiments de réplication virale/physiologie , Virion/physiologie , Virion/ultrastructure , Réplication virale
3.
Front Plant Sci ; 7: 708, 2016.
Article de Anglais | MEDLINE | ID: mdl-27303415

RÉSUMÉ

Brachypodium distachyon (Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences and recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. The availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...