Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Inorg Chem ; 55(17): 8371-80, 2016 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-27513717

RÉSUMÉ

The synthesis, electronic structure, and characterization via single-crystal X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and magnetic susceptibility of (Me4N)2PuCl6 are reported. NMR measurements were performed to both search for the direct (239)Pu resonance and to obtain local magnetic and electronic information at the Cl site through (35)Cl and (37)Cl spectra. No signature of (239)Pu NMR was observed. The temperature dependence of the Cl spectra was simulated by diagonalizing the Zeeman and quadrupolar Hamiltonians for (35)Cl, (37)Cl, and (14)N isotopes. Electronic structure calculations predict a magnetic Γ5 triplet ground state of Pu(IV) in the crystalline electric field of the undistorted PuCl6 octahedron. A tetragonal distortion would result in a very small splitting (∼20 cm(-1)) of the triplet ground state into a nonmagnetic singlet and a doublet state. The Cl shifts have an inflection point at T ≈ 15 K, differing from the bulk susceptibility, indicating a nonmagnetic crystal field ground state. The Cl spin-lattice relaxation time is constant to T = 15 K, below which it rapidly increases, also supporting the nonmagnetic crystal field ground state.

2.
Phys Rev Lett ; 111(18): 187003, 2013 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-24237553

RÉSUMÉ

The simple structure of HgBa(2)CuO(4+δ) (Hg1201) is ideal among cuprates for study of the pseudogap phase as a broken symmetry state. We have performed (17)O nuclear magnetic resonance on an underdoped Hg1201 crystal with a transition temperature of 74 K to look for circulating loop currents proposed theoretically and inferred from neutron scattering. The narrow spectra preclude static local fields in the pseudogap phase at the apical site, suggesting that the moments observed with neutrons are fluctuating. The nuclear magnetic resonance frequency shifts are consistent with a dipolar field from the Cu(2+) site.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE