Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
ACS Appl Mater Interfaces ; 15(48): 56285-56292, 2023 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-37991738

RÉSUMÉ

Soft actuators based on liquid crystalline elastomers (LCEs) are captivating significant interest because of their unique properties combining the programmable liquid crystalline molecular order and elasticity of polymeric materials. For practical applications, the ability to perform multimodal shape changes in a single LCE actuator at a subsecond level is a bottleneck. Here, we fabricate a monodomain LCE powered by electrostatic force, which enables fast multidirectional bending, oscillation, rotation, and complex actuation with a high degree of freedom. By tuning the dielectric constant and resistivity in LCE gels, a complete cycle of oscillation and rotation only takes 0.1 s. In addition, monodomain actuators exhibit anisotropic actuation behaviors that promise a more complex deployment in a potential electromechanical system. The presented study will pave the way for electrostatically controllable isothermal manipulation for a fast and multimode soft actuator.

2.
J Neurogenet ; 35(1): 33-44, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33326321

RÉSUMÉ

The gastrointestinal tract in the adult Drosophila serves as a model system for exploring the mechanisms underlying digestion, absorption and excretion, stem cell plasticity, and inter-organ communication, particularly through the gut-brain axis. It is also useful for studying the cellular and adaptive responses to dietary changes, alterations in microbiota and immunity, and systematic and endocrine signals. Despite the various cell types and distinct regions in the gastrointestinal tract, few tools are available to target and manipulate the activity of each cell type and region, and their gene expression. Here, we report 353 GAL4 lines and several split-GAL4 lines that are expressed in enteric neurons (ENs), progenitors (ISCs and EBs), enterocytes (ECs), enteroendocrine cells (EEs), or/and other cell types that are yet to be identified in distinct regions of the gut. We had initially collected approximately 600 GAL4 lines that may be expressed in the gut based on RNA sequencing data, and then crossed them to UAS-GFP to perform immunohistochemistry to identify those that are expressed selectively in the gut. The cell types and regional expression patterns that are associated with the entire set of GAL4 drivers and split-GAL4 combinations are annotated online at http://kdrc.kr/index.php (K-Gut Project). This GAL4 resource can be used to target specific populations of distinct cell types in the fly gut, and therefore, should permit a more precise investigation of gut cells that regulate important biological processes.


Sujet(s)
Protéines de Drosophila/génétique , Système nerveux entérique/métabolisme , Tube digestif/métabolisme , Régulation de l'expression des gènes au cours du développement , Neurones/métabolisme , Facteurs de transcription/génétique , Animaux , Axe cerveau-intestin/physiologie , Protéines de Drosophila/métabolisme , Drosophila melanogaster , Facteurs de transcription/métabolisme
3.
Chemosphere ; 251: 126387, 2020 Jul.
Article de Anglais | MEDLINE | ID: mdl-32151812

RÉSUMÉ

Adsorption is a simple and effective method for the removal of hexavalent chromium (Cr(VI)) from contaminated water. Several amino silane-graphene oxide (GO) composites with different species of amino groups (pN-GO, psN-GO, and pssN-GO; p: primary, s: secondary, N: amine) were evaluated to investigate their adsorption capacity and the effects of primary and secondary amines on Cr(VI) adsorption. We conducted a quantitative analysis to reveal the difference between primary and secondary amines in terms of Cr(VI) removal efficiency. A synergic effect was observed between the neighboring secondary amines in pssN-GO. From the Langmuir model prediction, we found that the composite with pssN-GO exhibited the highest maximum adsorption capacity (260.74 mg/g), followed by those with psN-GO (208.22 mg/g) and pN-GO (189.47 mg/g). Monolayer adsorption was more dominant when using pssN-GO, with the pseudo-second-order model best fitting the kinetic experiment results, whereas multilayer adsorption was dominant when using psN-GO and pN-GO.


Sujet(s)
Chrome/composition chimique , Graphite/composition chimique , Polluants chimiques de l'eau/composition chimique , Adsorption , Concentration en ions d'hydrogène , Cinétique , Silanes/composition chimique
4.
Sci Rep ; 10(1): 4882, 2020 03 17.
Article de Anglais | MEDLINE | ID: mdl-32184454

RÉSUMÉ

In this study, the influence of drying conditions on amine (-NH3) functionalization of graphene oxide (GO) was evaluated, and the hexavalent chromium (Cr(VI)) adsorption efficiency of the prepared materials was compared. 3-[2-(2-aminoehtylamino) ethylamino]propyl-trimethoxysilane (3N) was used for amine functionalization. The synthesized materials were analyzed by SEM, BET, TGA, XPS, and EA. TGA results showed that the solution-GO (SGO) was functionalized by more 3N molecules than freeze-dried GO (FDGO) and oven-dried GO (ODGO). Additionally, XPS analysis also showed that the ratio of N/C and Si/C was relatively high in SGO than FDGO and ODGO. The maximum adsorption capacity of SGO, FDGO, and ODGO for Cr(VI) was 258.48, 212.46, and 173.45 mg g-1, respectively. These results indicate that it is better to use SGO without drying processes for efficient amine functionalization and Cr(VI) removal. However, when the drying process is required, freeze-drying is better than oven-drying.

5.
Sci Rep ; 8(1): 12078, 2018 08 13.
Article de Anglais | MEDLINE | ID: mdl-30104735

RÉSUMÉ

We are proposed that a possible mechanism for Cr(VI) removal by functionalized mesoporous silica. Mesoporous silica was functionalized with (3-aminopropyl)trimethoxysilane (APTMS) using the post-synthesis grafting method. The synthesized materials were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption-desorption analysis, Fourier-transform infrared (FT-IR), thermogravimetric analyses (TGA), and X-ray photoelectron spectroscopy (XPS) to confirm the pore structure and functionalization of amine groups, and were subsequently used as adsorbents for the removal of Cr(VI) from aqueous solution. As the concentration of APTMS increases from 0.01 M to 0.25 M, the surface area of mesoporous silica decreases from 857.9 m2/g to 402.6 m2/g. In contrast, Cr(VI) uptake increases from 36.95 mg/g to 83.50 mg/g. This indicates that the enhanced Cr(VI) removal was primarily due to the activity of functional groups. It is thought that the optimum concentration of APTMS for functionalization is approximately 0.05 M. According to XPS data, NH3+ and protonated NH2 from APTMS adsorbed anionic Cr(VI) by electrostatic interaction and changed the solution pH. Equilibrium data are well fitted by Temkin and Sips isotherms. This research shows promising results for the application of amino functionalized mesoporous silica as an adsorbent to removal Cr(VI) from aqueous solution.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE