Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Nanomedicine ; 19: 5011-5020, 2024.
Article de Anglais | MEDLINE | ID: mdl-38832337

RÉSUMÉ

Purpose: Atomic layer deposition (ALD) is a method that can deposit zirconia uniformly on an atomic basis. The effect of deposited zirconia on titanium implants using ALD was evaluated in vivo. Methods: Machined titanium implants (MTIs) were used as the Control. MTIs treated by sandblasting with large grit and acid etching (SA) and MTIs deposited with zirconia using ALD are referred to as Groups S and Z, respectively. Twelve implants were prepared for each group. Six rabbits were used as experimental animals. To evaluate the osteogenesis and osteocyte aspects around the implants, radiological and histological analyses were performed. The bone-to-implant contact (BIC) ratio was measured and statistically analyzed to evaluate the osseointegration capabilities. Results: In the micro-CT analysis, more radiopaque bone tissues were observed around the implants in Groups S and Z. Histological observation found that Groups S and Z had more and denser mature bone tissues around the implants in the cortical bone area. Many new and mature bone tissues were also observed in the medullary cavity area. For the BIC ratio, Groups S and Z were significantly higher than the Control in the cortical bone area (P < 0.017), but there was no significant difference between Groups S and Z. Conclusion: MTIs deposited with zirconia using ALD (Group Z) radiologically and histologically showed more mature bone formation and activated osteocytes compared with MTIs (Control). Group Z also had a significantly higher BIC ratio than the Control. Within the limitations of this study, depositing zirconia on the surface of MTIs using ALD can improve osseointegration in vivo.


Sujet(s)
Ostéo-intégration , Titane , Zirconium , Animaux , Zirconium/composition chimique , Zirconium/pharmacologie , Lapins , Titane/composition chimique , Titane/pharmacologie , Ostéo-intégration/effets des médicaments et des substances chimiques , Propriétés de surface , Microtomographie aux rayons X , Matériaux revêtus, biocompatibles/composition chimique , Matériaux revêtus, biocompatibles/pharmacologie , Interface os-implant , Ostéogenèse/effets des médicaments et des substances chimiques , Implants dentaires , Prothèses et implants
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-36834746

RÉSUMÉ

Peri-implantitis is an inflammatory disease similar to periodontitis, caused by biofilms formed on the surface of dental implants. This inflammation can spread to bone tissues and result in bone loss. Therefore, it is essential to inhibit the formation of biofilms on the surface of dental implants. Thus, this study examined the inhibition of biofilm formation by treating TiO2 nanotubes with heat and plasma. Commercially pure titanium specimens were anodized to form TiO2 nanotubes. Heat treatment was performed at 400 and 600 °C, and atmospheric pressure plasma was applied using a plasma generator (PGS-200, Expantech, Suwon, Republic of Korea). Contact angles, surface roughness, surface structure, crystal structure, and chemical compositions were measured to analyze the surface properties of the specimens. The inhibition of biofilm formation was assessed using two methods. The results of this study showed that the heat treatment of TiO2 nanotubes at 400 °C inhibited the adhesion of Streptococcus mutans (S. mutans), associated with initial biofilm formation, and that heat treatment of TiO2 nanotubes at 600 °C inhibited the adhesion of Porphyromonas gingivalis (P. gingivalis), which causes peri-implantitis. Applying plasma to the TiO2 nanotubes heat-treated at 600 °C inhibited the adhesion of S. mutans and P. gingivalis.


Sujet(s)
Implants dentaires , Nanotubes , Péri-implantite , Humains , Nanotubes/composition chimique , Biofilms , Titane/composition chimique , Propriétés de surface , Streptococcus mutans
3.
Materials (Basel) ; 15(15)2022 Aug 03.
Article de Anglais | MEDLINE | ID: mdl-35955282

RÉSUMÉ

Plasma treatment on a zirconia surface prevents bacterial contamination and maintains osteoblast activity. To assess the degree of adhesion of Porphyromonas gingivalis on a zirconia surface after non-thermal plasma (NTP) treatment, specimens were treated with plasma for 60, 300, and 600 s, after which P. gingivalis was inoculated onto the surface and incubated for 48 h. To assess osteoblast activity after NTP treatment, osteoblasts (MC3T3-E1) were dispensed onto the specimens contaminated with P. gingivalis immediately after NTP for 60 and 120 s, followed by incubation for 48, 72, and 96 h. P. gingivalis was cultured after 60 s of NTP treatment of zirconia. The NTP and control groups showed no significant difference (p = 0.91), but adhesion was significantly increased following NTP treatment for 300 s or longer (300, 600 s groups) (p < 0.05). After NTP treatment of P. gingivalis-contaminated zirconia, osteoblast activity significantly increased at 72 and 96 h (I60 and I120 s group) in the groups treated with plasma (p < 0.017). Application of NTP to dental zirconia implants for 60 s not only inhibits the proliferation of P. gingivalis, which causes peri-implantitis but also increases osseointegration on zirconia surfaces contaminated with P. gingivalis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...