Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 530
Filtrer
1.
Front Immunol ; 15: 1433315, 2024.
Article de Anglais | MEDLINE | ID: mdl-39238638

RÉSUMÉ

Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.


Sujet(s)
Tumeurs colorectales , Inhibiteurs de points de contrôle immunitaires , Immunothérapie , Humains , Tumeurs colorectales/thérapie , Tumeurs colorectales/immunologie , Immunothérapie/méthodes , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Animaux , Lymphocytes TIL/immunologie , Lymphocytes TIL/métabolisme , Thérapie virale de cancers/méthodes , Virus oncolytiques/immunologie
2.
Mol Med ; 30(1): 118, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39123125

RÉSUMÉ

BACKGROUND: Cell subsets differentially modulate host immune responses to Mycobacterium tuberculosis (MTB) infection. However, the nature and functions of these subsets against osteoarticular tuberculosis (OTB) are unclear. Here, we aimed to understand the phenotypes and functions of immune cell subsets in patients with OTB using single-cell RNA sequencing (scRNA-Seq). METHODS: Pathological and healthy adjacent tissues were isolated from patients with OTB and subjected to scRNA-Seq. Unsupervised clustering of cells was performed based on gene expression profiles, and uniform manifold approximation and projection was used for clustering visualization. RESULTS: Thirteen cell subsets were identified in OTB tissues. scRNA-seq datasets of patients and healthy controls (HCs) showed that infection changed the frequency of immune cell subsets in OTB tissues. Myeloid cell examination revealed nine subsets. The frequency of macrophage-RGS1high subsets decreased in OTB tissues; this increased MTB susceptibility in an SLC7A11/ferroptosis-dependent manner. Immunohistochemistry assays and flow cytometry for patients with OTB and osteoarticular bacterial infection (OBI) and HCs verified that the frequency of macrophage-RGS1high subset decreased in OTB tissues and blood samples, thereby distinguishing patients with OTB from HCs and patients with OBI. CONCLUSION: The macrophage-RGS1high subset levels were decreased in patients with OTB, and would be up-regulated after effective treatment. Therefore, the clinical significance of this study is to discover that macrophage-RGS1high subset may serve as a potential biomarker for OTB diagnosis and treatment efficacy monitoring.


Sujet(s)
Analyse de profil d'expression de gènes , Macrophages , Analyse sur cellule unique , Transcriptome , Tuberculose ostéoarticulaire , Humains , Analyse sur cellule unique/méthodes , Macrophages/métabolisme , Macrophages/immunologie , Tuberculose ostéoarticulaire/génétique , Tuberculose ostéoarticulaire/diagnostic , Femelle , Mâle , Mycobacterium tuberculosis , Adulte d'âge moyen , Adulte , Marqueurs biologiques
3.
Curr Top Med Chem ; 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39108107

RÉSUMÉ

BACKGROUND: Self-emulsifying nano-phase of traditional Chinese medicine are a research hotspot. Xiao-Chai-Hu decoction is a commonly used compound decoction in clinical practice, which is of great research significance. The aim of this study was to isolate and characterize the self-emulsifying nano-phase and other phases of Xiao-Chai-Hu decoction, and to study the effects of each phase on acute liver injury. METHODS: The liquid medicine was prepared employing centrifugation followed by dialysis. Single- factor investigation methodology was utilized to optimize the preparation parameters for both phases. Characterization of the formulated phase involved analyses such as surface morphology assessment, measurement of nanoparticle size and Zeta potential using an analyzer, observation of the Tyndall effect, conducting diffusion and dilution tests, examination under a microscope, and structural visualization via transmission electron microscopy (TEM). Furthermore, an acute liver injury model was established in rats through intraperitoneal injection of D-Galactosamine (D-Gal- N). To assess hepatic function and oxidative stress status, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in liver tissue were quantified. The liver coefficients for each group were calculated as an additional parameter. For histopathological evaluation, liver tissue sections from the experimental group were stained with Hematoxylin and Eosin (H&E) and examined microscopically under light conditions. These revisions aim to enhance clarity, correct minor grammatical errors (such as capitalization of "HE" to "H&E"), and ensure a smoother flow of information without altering the scientific content of your original text. RESULTS: Successful establishment and separation of four distinct phases were achieved, including the self-emulsifying nano-phase, precipitation phase, suspension phase, and true solution phase. The self-emulsifying nano-phase was characterized as spherical particles with an average diameter of approximately 100 nm. Pharmacodynamic assessments revealed that both Xiao-Chai-Hu decoction and its self-emulsifying nano-phase significantly reduced liver coefficients and alanine aminotransferase (ALT) levels compared to controls (P<0.05). However, no statistically significant differences were observed in regards to aspartate aminotransferase (AST) concentrations, malondialdehyde (MDA) content, or superoxide dismutase (SOD) activity between the treatment groups and control (P>0.05). These findings indicate that both Xiao-Chai-Hu decoction and its self-emulsifying nano-formulation ameliorated D-GalN-induced acute liver injury, albeit without statistically distinguishable efficacy between them (P>0.05). CONCLUSION: The presence of a self-emulsifying nano-phase within Xiao-Chai-Hu decoction is confirmed, and this nano-phase emerges as a therapeutically efficacious component in mitigating acute liver injury.

4.
MedComm (2020) ; 5(9): e687, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39156763

RÉSUMÉ

The newly identified XBB.1.16-containing sublineages, including XBB.1.5, have become the prevailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant in circulation. Unlike previous Omicron XBB variants (e.g., XBB.1.5 and XBB.1.9) harboring the F486P substitution, XBB.1.16 also carries a T478R substitution in the receptor-binding domain (RBD). Numerous researchers have delved into the high transmissibility and immune evasion of XBB.1.16 subvariant. Therefore, developing a new vaccine targeting XBB.1.16, including variants of concern (VOCs), is paramount. In our study, we engineered a recombinant protein by directly linking the S-RBD sequence of the XBB.1.16 strain of SARS-CoV-2 to the sequences of two heptad repeat sequences (HR1 and HR2) from the SARS-CoV-2 S2 subunit. Named the recombinant RBDXBB.1.16-HR/trimeric protein, this fusion protein autonomously assembles into a trimer. Combined with an MF59-like adjuvant, the RBDXBB.1.16-HR vaccine induces a robust humoral immune response characterized by high titers of neutralizing antibodies against variant pseudovirus and authentic VOCs and cellular immune responses. Additionally, a fourth heterologous RBDXBB.1.16-HR vaccine enhances both humoral and cellular immune response elicited by three-dose mRNA vaccines. These findings demonstrate that the recombinant RBDXBB.1.16-HR protein, featuring the new T478R mutation, effectively induces solid neutralizing antibodies to combat newly emerged XBB variants.

5.
Eur J Pharmacol ; 982: 176942, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39182546

RÉSUMÉ

Renal fibrosis is a process in which excessive deposition of extracellular matrix leads to an increase in tissue hardness and gradual destruction of the renal parenchyma. Chronic kidney disease (CKD) commonly progresses to end-stage renal disease (ESRD), ultimately leading to renal failure. This disease has high incidence and mortality rates, but to date, effective treatment options are lacking. PEP-Z-2 is a collagen peptide isolated from redlip croaker scales and may have potential fibroprotective activity. In this study, PEP-Z-2 was found to alleviate unilateral ureteral obstruction (UUO)- and folic acid (FA)-induced kidney injury in a mouse model, reduce collagen deposition in tissues, normalize renal function, reduce the expression of fibrosis markers, reduce reactive oxygen species (ROS) production, and restore the balance of the oxidant/antioxidant system. In vitro experiments also demonstrated that PEP-Z-2 inhibits the TGF-ß-induced differentiation of fibroblasts and renal tubular epithelial cells into myofibroblasts and reduces the production of extracellular matrix (ECM) proteins such as fibronectin, Col I, and α-SMA, demonstrating notable therapeutic effects on renal fibrosis. This effect is achieved by regulating the TGF-ß/Smad/AKT/MAPK pathway. Our research suggested that PEP-Z-2 is a potential therapeutic drug for renal fibrosis, and peptides from aquatic organisms may constitute a new class of candidate drugs for the treatment of renal fibrosis and even other types of organ fibrosis.

6.
ACS Appl Mater Interfaces ; 16(35): 46495-46505, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39167418

RÉSUMÉ

Investigating organic carriers' utilization efficiency and bioactivity within organic-inorganic hybrid nanoflowers is critical to constructing sensitive immunosensors. Nevertheless, the sensitivity of immunosensors is interactively regulated by different classes of biomolecules such as antibodies and enzymes. In this work, we introduced a new alkaline phosphatase-antibody-CaHPO4 hybrid nanoflowers (AAHNFs) microreactor based colorimetric immunoprobe. This system integrates a biometric unit (antibody) with a signal amplification element (enzyme) through the biomineralization process. Specifically, the critical factors affecting antibody recognition activity in the formation mechanism of AAHNFs are investigated. The designed AAHNFs retain antibody recognition ability with enhanced protection for encapsulated proteins against high temperature, organic solvents, and long-term storage, facilitating the selective construction of lock structures against antigens. Additionally, a colorimetric immunosensor based on AAHNFs was developed. After ascorbic acid 2-phosphate hydrolysis by alkaline phosphatase (ALP), the generated ascorbic acid decomposes I2 to I-, inducing the localized surface plasmon resonance in the silver nanoplate, which is effectively tuned through shape conversion to develop the sensor. Further, a 3D-printed portable device is fabricated, integrated with a smartphone sensing platform, and applied to the data of collection and analysis. Notably, the immunosensor exhibits improved analytical performance with a 0.1-6.25 ng·mL-1 detection range and a 0.06 ng·mL-1 detection limit for quantitative saxitoxin (STX) analysis. The average recoveries of STX in real samples ranged from 85.9% to 105.9%. This study presents a more in-depth investigation of the recognition element performance, providing insights for improved antibody performance in practical applications.


Sujet(s)
Phosphatase alcaline , Colorimétrie , Saxitoxine , Phosphatase alcaline/métabolisme , Phosphatase alcaline/composition chimique , Saxitoxine/analyse , Saxitoxine/composition chimique , Colorimétrie/méthodes , Techniques de biocapteur/méthodes , Biocatalyse , Limite de détection , Nanostructures/composition chimique , Dosage immunologique/méthodes , Acide ascorbique/composition chimique , Acide ascorbique/analyse , Acide ascorbique/analogues et dérivés , Argent/composition chimique
7.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-39000674

RÉSUMÉ

In this study, we used a self-neutralizing system to counteract too acidic a pH, unsuitable for wood adhesives, and tested it on MUF resins augmented by the addition of citric acid or other organic acids, based on the addition of small percentages of hexamine or another suitable organic base to form an acid-base buffer. In this manner, the pH of the adhesive was maintained above the minimum allowed value of 4, and the strength results of wood particleboard and plywood bonded with this adhesive system increased due to the additional cross-linking imparted by the citric acid. Thus, the wood constituents at the wood/adhesive interface were not damaged/degraded by too low a pH, thus avoiding longer-term service failure of the bonded joints. The addition of the buffering system increased the strength of the bondline in both the plywood and particleboard, both when dry and after hot water and boiling water tests. The IB strength of the particleboard was then increased by 15-17% when dry but by 82% after boiling. For the plywood, the shear strengths when dry and after 3 h in hot water at 63 °C were, respectively, 37% and 90% higher than for the control. The improvement in the bonded panel strength is ascribed to multiple reasons: (i) the slower, more regular cross-linking rate due to the action of the buffer; (ii) the shift in the polycondensation-degradation equilibrium to the left induced by the higher pH and the long-term stability of the organic buffer; (iii) the additional cross-linking by citric acid of some of the MUF resin amine groups; (iv) the already known direct linking of citric acid with the carbohydrates and lignin constituents at the interface of the wood substrate; and (v) the likely covalent linking to the interfacial wood constituents of the prelinked MUF-citric acid resin by some of the unreacted citric acid carboxyl groups.

8.
Org Biomol Chem ; 22(30): 6034-6044, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39011956

RÉSUMÉ

Light-induced ligand-to-metal charge transfer (LMCT) has been utilized as a powerful strategy in various organic reactions. First-row transition metals, especially iron complexes, show good applications in this process. Fe(III)-Cl and Fe(III)-OR species are two key intermediates involved in the LMCT of iron complexes. This review highlights studies on LMCT of Fe(III)-OR species, including carboxylate-iron and alkoxy-iron species, in organic transformations. Reaction conditions, substrate scope and related mechanisms are discussed.

9.
Anal Biochem ; 694: 115629, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39069245

RÉSUMÉ

Xiaochaihu Decoction(XCHD)is a classic prescription for the treatment of fever, but the mechanism is not clear. In this study, We elucidated the mechanism of action through network pharmacology and molecular docking. A rat fever model was established to verify the prediction results of network pharmacology. The analysis revealed that 120 intersection targets existed between XCHD and fever. The TP53, STAT3, RELA, MAPK1, AKT1, TNF and MAPK14 as potential core targets of XCHD in fever treatment. GO and KEGG pathway enrichment analyses indicated that XCHD may act through pathways such as the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway. Molecular docking results demonstrated that quercetin, kaempferol, ß-sitosterol, stigmasterol and baicalein exhibited strong binding activity to key targets. Animal experiments showed that XCHD significantly reduced body temperature and levels of IL-1ß, IL-6, TNF-α, NO, PGE2, and cAMP in rats with fever. Importantly, no significant difference was observed between the XCHD self-emulsifying nano phase plus suspension phase and XCHD group. XCHD exerts its therapeutic effects on fever through a multi-ingredient, multi-target, and multi-pathway approach.


Sujet(s)
Médicaments issus de plantes chinoises , Fièvre , Simulation de docking moléculaire , Pharmacologie des réseaux , Animaux , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/composition chimique , Médicaments issus de plantes chinoises/usage thérapeutique , Rats , Fièvre/traitement médicamenteux , Fièvre/métabolisme , Mâle , Simulation de dynamique moléculaire , Rat Sprague-Dawley , Transduction du signal/effets des médicaments et des substances chimiques
10.
Stem Cell Res ; 80: 103513, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39079396

RÉSUMÉ

Timothy syndrome, an extremely rare disease, is closely associated with a mutation in CACNA1C gene, which encodes the cardiac L-type voltage-gated calcium channel (Cav1.2). In this study, we generated a human induced pluripotent stem cell (iPSC) line from a Timothy syndrome infant carrying heterozygous CACNA1C mutation (transcript variant NM_000719.7c.1216G>A: p.G406R). The generated iPSC line showed typical stem cell morphology, positively expressed pluripotency and proliferation markers, normal karyotype, and trilineage differentiation potential. Therefore, this patient-specific iPSC can be of great significance in investigating the mechanisms underlying Timothy syndrome, and hence establishing effective intervention strategies.


Sujet(s)
Trouble autistique , Canaux calciques de type L , Hétérozygote , Cellules souches pluripotentes induites , Syndrome du QT long , Syndactylie , Humains , Canaux calciques de type L/génétique , Canaux calciques de type L/métabolisme , Cellules souches pluripotentes induites/métabolisme , Syndactylie/génétique , Syndactylie/anatomopathologie , Syndrome du QT long/génétique , Syndrome du QT long/anatomopathologie , Syndrome du QT long/métabolisme , Trouble autistique/génétique , Trouble autistique/anatomopathologie , Mutation , Lignée cellulaire , Différenciation cellulaire , Nourrisson
11.
ACS Omega ; 9(17): 19009-19019, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38708213

RÉSUMÉ

OBJECTIVE: our aim is to explore the mechanism of action of Yiwei decoction (YWD) in addressing premature ovarian insufficiency (POI) through a combination of transcriptomics and network pharmacology. By doing so, we hope to identify important pathways of action, key targets, and active components that contribute to the efficacy of YWD. MATERIALS AND METHODS: group A comprised of the model + traditional Chinese medicine group, while group B was the model control group and group C was the normal control group. After gavage, serum AMH and E2 levels were measured by using ELISA. HE staining was used to study the impact of YWD on ovarian follicle recovery in POI rats. Additionally, RNA-seq sequencing technology was employed to analyze the transcription levels of mRNAs and miRNAs in the ovarian tissues of each group, and the resulting data were examined using R. YWD used UPLC-Q-TOF-HRMS to analyze its active ingredients. Upon obtaining the sequencing results, the miRWalk database was utilized to forecast the targets of DEmiRNAs. Network pharmacology was then applied to predict the targets of active ingredients present in YWD, ultimately constructing a regulatory network consisting of active ingredients-mRNA-miRNA. The coexpression relationship between mRNAs and miRNAs was calculated using the Pearson correlation coefficient, and high correlation coefficients between miRNA-mRNA were confirmed through miRanda sequence combination. RESULTS: the application of YWD resulted in improved serum levels of AMH and E2, as well as an increased number of ovarian follicles in rats with POI. However, there was a minimal impact on the infiltration of ovarian lymphocytes. Through GSEA pathway enrichment analysis, we found that YWD may have a regulatory effect on PI3K-Akt, ovarian steroidogenesis, and protein digestion and absorption, which could aid in the treatment of POI. Additionally, our research discovered a total of 6 DEmiRNAs between groups A and B, including 2 new DEmiRNAs. YWD contains 111 active compounds, and our analysis of the active component-mRNA regulatory network revealed 27 active components and 73 mRNAs. Furthermore, the coexpression network included 5 miRNAs and 18 mRNAs. Our verification of MiRanda binding demonstrated that 12 of the sequence binding sites were stable. CONCLUSIONS: our research has uncovered the regulatory network mechanism of active ingredients, mRNA, and miRNA in YWD POI treatment. However, further research is needed to determine the effect of the active ingredients on key miRNAs and mRNAs.

12.
Talanta ; 276: 126288, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38781916

RÉSUMÉ

Gizzerosine is a biogenic amine produced in fish meal drying process and posted higher mortality due to gizzard erosion in poultry than histamine. However, it is difficult to obtain gizzerosine and achieve sensitive practical detection due to its simple structure. Herein, a monoclonal antibody (mAb) specific to gizzerosine was generated based on the new structural design and a fluorescence immunosensor for sensitive and on-site detection of gizzerosine in feed was first established. Molecular modeling of the three-dimensional (3D) structure and surface electrostatic potential of gizzerosine indicated that the carbonyl group of gizzerosine hapten might affect the important sites of antigen-antibody interactions. The proposed structure was used to obtain the sensitive and specific mAb with IC50 of 3.88 ng/mL in indirect competitive ELISA which was approximately 100-fold lower than that of direct competitive ELISA. Considering the practical application scenarios, a fluorescence immunosensor based on microporous dry method integrated with independent quality control line was established to improve detection stability. Under the optimum conditions, the proposed immunosensor showed a good linear relationship from 1.10 to 19.78 ng/mL and provided a low detection limit of 50 ng/g which was approximately 80-fold lower than the maximum recommended amount (0.4 mg/kg) of gizzerosine in feed. The recoveries of 6 kinds of feed ranged from 83.1 % to 114.3 %, which was in good consistence with that of UHPLC-MS/MS. Overall, this work provides a fast, cost-effective and reliable on-site tool for rapid screening of gizzerosine residues in feed samples.


Sujet(s)
Aliment pour animaux , Anticorps monoclonaux , Techniques de biocapteur , Anticorps monoclonaux/immunologie , Anticorps monoclonaux/composition chimique , Aliment pour animaux/analyse , Techniques de biocapteur/méthodes , Limite de détection , Animaux , Fluorescence , Dosage immunologique/méthodes , Modèles moléculaires
13.
Chin J Integr Med ; 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38816635

RÉSUMÉ

OBJECTIVE: To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism. METHODS: The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1ß in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS). RESULTS: UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05). CONCLUSIONS: BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.

14.
Opt Lett ; 49(7): 1810, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38560869

RÉSUMÉ

This publisher's note contains a correction to Opt. Lett.48, 6064 (2024)10.1364/OL.509275.

15.
Pestic Biochem Physiol ; 200: 105825, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38582589

RÉSUMÉ

Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.


Sujet(s)
Dopamine , Drosophila melanogaster , Tephritidae , Animaux , Dopamine/métabolisme , Dopamine/pharmacologie , Drosophila melanogaster/métabolisme , Mémoire , Antagonistes de la dopamine/pharmacologie
16.
MedComm (2020) ; 5(5): e539, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38680520

RÉSUMÉ

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167151, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38565387

RÉSUMÉ

Immunoglobulin A vasculitis (IgAV) is the most common vasculitis of childhood. Disordered immune responses play important roles in its pathogenesis, but the comprehensive immune profile of the disease and the underlying mechanisms are still largely unknown. Here we found a potential disease biomarker cold inducible RNA binding protein (CIRP) in our pediatric IgAV cohort. Serum CIRP level in these patients were elevated and positively correlated with the increased early memory (CD45RA+CD62L+CD95+) T cells revealed using multicolor flow cytometry. Immune phenotyping of the patients showed they had more activated T cells with higher IL6Ra expression. T cell culture experiment showed CIRP further activated both human CD4+ and CD8+ T cells as indicated by increased perforin secretion and phosphorylation of STAT3. Blockade of IL6Rα attenuated CIRP-induced T cell toxicity in vitro. RNA-sequencing data further supported CIRP stimulation promoted human T cell activation and migration, fueled inflammation through the JAK-STAT signaling pathway. Therefore, IL6Ra-mediated T cell activation by extracellular CIRP may contribute to pathogenesis of IgAV in children, both CIRP and IL6Ra could be new therapeutic targets for IgAV.


Sujet(s)
Activation des lymphocytes , Protéines de liaison à l'ARN , Récepteurs à l'interleukine-6 , Facteur de transcription STAT-3 , Adolescent , Enfant , Femelle , Humains , Mâle , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Récepteur cellulaire-2 du virus de l'hépatite A , /immunologie , /anatomopathologie , /métabolisme , Activation des lymphocytes/immunologie , Récepteurs à l'interleukine-6/métabolisme , Récepteurs à l'interleukine-6/génétique , Récepteurs à l'interleukine-6/immunologie , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Protéines de liaison à l'ARN/immunologie , Transduction du signal , Facteur de transcription STAT-3/métabolisme , Facteur de transcription STAT-3/immunologie , Lymphocytes T/immunologie , Lymphocytes T/métabolisme
18.
Front Immunol ; 15: 1323723, 2024.
Article de Anglais | MEDLINE | ID: mdl-38650928

RÉSUMÉ

Introduction: The gut microbiota, T cell subsets, and cytokines participate in tuberculosis (TB) pathogenesis. To date, the mechanisms by which these factors interactively promote TB development at different time points remain largely unclear. In the context of this study, We looked into the microorganisms in the digestive tract, T cell types, and cytokines related to tuberculosis. Methods: According to QIIME2, we analyzed 16SrDNA sequencing of the gut microbiome on the Illumina MiSeq. Enzyme-linked immunosorbent assay was used to measure the concentrations of cytokines. Results: We showed the presence of 26 identifiable differential microbiomes in the gut and 44 metabolic pathways between healthy controls and the different time points in the development of TB in patients. Five bacterial genera (Bacteroides, Bifidobacterium, Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4/CD8, whereas three bacterial taxa (Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4. Three bacterial taxa (Faecalibacterium, Ruminococcus, and Dorea) were most closely associated with IL-4. Ruminococcus was most closely associated with IL-2 and IL-10. Conclusion: Diverse microorganisms, subsets of T cells, and cytokines, exhibiting varying relative abundances and structural compositions, were observed in both healthy controls and patients throughout distinct phases of tuberculosis. Gaining insight into the function of the gut microbiome, T cell subsets, and cytokines may help modulate therapeutic strategies for TB.


Sujet(s)
Marqueurs biologiques , Cytokines , Microbiome gastro-intestinal , Sous-populations de lymphocytes T , Tuberculose , Humains , Microbiome gastro-intestinal/immunologie , Cytokines/métabolisme , Mâle , Femelle , Adulte , Sous-populations de lymphocytes T/immunologie , Sous-populations de lymphocytes T/métabolisme , Adulte d'âge moyen , Tuberculose/immunologie , Tuberculose/microbiologie , Tuberculose/diagnostic , Bactéries/immunologie , Bactéries/classification , Mycobacterium tuberculosis/immunologie , Fèces/microbiologie
20.
Genes Dis ; 11(4): 101066, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38550714

RÉSUMÉ

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE