Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 342
Filtrer
1.
Cell Rep Med ; : 101669, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39127040

RÉSUMÉ

Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid ß (Aß)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aß amyloid responsome. Proteins in the most conserved network (M42) accumulate in plaques, cerebrovascular amyloid (CAA), and/or dystrophic neuronal processes, and overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), increases the accumulation of Aß in plaques and CAA. M42 proteins bind amyloid fibrils in vitro, and MDK and PTN co-accumulate with cardiac transthyretin amyloid. M42 proteins appear intimately linked to amyloid deposition and can regulate amyloid deposition, suggesting that they are pathology modifiers and thus putative therapeutic targets. We posit that amyloid-scaffolded accumulation of numerous M42+ proteins is a central mechanism mediating downstream pathophysiology in AD.

2.
Mol Neurodegener ; 19(1): 60, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39107789

RÉSUMÉ

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.


Sujet(s)
Maladie d'Alzheimer , Maladie à corps de Lewy , Protéomique , Humains , Maladie à corps de Lewy/métabolisme , Maladie à corps de Lewy/anatomopathologie , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Protéomique/méthodes , Sujet âgé , Femelle , Mâle , Sujet âgé de 80 ans ou plus , Marqueurs biologiques/métabolisme , Encéphale/métabolisme , Encéphale/anatomopathologie , Cortex préfrontal/métabolisme , Maladie de Parkinson/métabolisme , Maladie de Parkinson/anatomopathologie
3.
Elife ; 132024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39140332

RÉSUMÉ

Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the 'antibody characterization crisis', and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders - researchers, universities, journals, antibody vendors and repositories, scientific societies and funders - to increase the reproducibility of studies that rely on antibodies.


Sujet(s)
Anticorps , Recherche biomédicale , Reproductibilité des résultats , Humains , Animaux
4.
Int J Geriatr Psychiatry ; 39(6): e6108, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38858522

RÉSUMÉ

OBJECTIVES: To examine clinically important adverse events (AEs) associated with methylphenidate (MPH) treatment of apathy in Alzheimer's Disease (AD) versus placebo, including weight loss, vital signs, falls, and insomnia. METHODS: The Apathy in Dementia Methylphenidate Trial 2 (ADMET2) trial was a multicenter randomized, placebo-controlled trial of MPH to treat apathy in individuals with apathy and AD. Participants in ADMET2 had vital signs and weight measured at monthly visits through 6 months. AEs, including insomnia, falls, and cardiovascular events, were reported at every visit by participants and families using a symptom checklist. RESULTS: The study included 98 participants in the MPH group and 101 in the placebo group. Participants in the MPH group experienced greater weight loss on average than the placebo through the 6-month follow-up, with a difference in change between MPH and placebo of 2.8 lb (95% confidence interval, CI: 0.7, 4.9 lb). No treatment group differences in change during the trial were found in systolic and diastolic blood pressure. More participants in the MPH group reported falls during the follow-up, 10 versus 6 in MPH and placebo groups, respectively. No differences in post-baseline insomnia were observed between the treatment groups. No participants reported instances of myocardial infarction, congestive heart failure, arrhythmia, stroke, or cardiomyopathy throughout the study period. CONCLUSIONS: MPH use in AD patients for treating apathy is relatively safe, particularly notable given the many medical comorbidities in this population. There was a statistically significant but modest weight loss associated with MPH use, and clinicians are thus advised to monitor weight during MPH treatment.


Sujet(s)
Chutes accidentelles , Maladie d'Alzheimer , Apathie , Stimulants du système nerveux central , Méthylphénidate , Perte de poids , Humains , Maladie d'Alzheimer/traitement médicamenteux , Méthylphénidate/usage thérapeutique , Méthylphénidate/effets indésirables , Femelle , Mâle , Apathie/effets des médicaments et des substances chimiques , Sujet âgé , Stimulants du système nerveux central/usage thérapeutique , Stimulants du système nerveux central/effets indésirables , Sujet âgé de 80 ans ou plus , Perte de poids/effets des médicaments et des substances chimiques , Chutes accidentelles/statistiques et données numériques , Méthode en double aveugle , Troubles de l'endormissement et du maintien du sommeil/induit chimiquement , Troubles de l'endormissement et du maintien du sommeil/traitement médicamenteux
5.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38924431

RÉSUMÉ

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Sujet(s)
Maladie d'Alzheimer , Apolipoprotéine E4 , Chlorhydrate d'atomoxétine , Protéomique , Humains , Maladie d'Alzheimer/liquide cérébrospinal , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/génétique , Protéomique/méthodes , Apolipoprotéine E4/génétique , Chlorhydrate d'atomoxétine/usage thérapeutique , Chlorhydrate d'atomoxétine/pharmacologie , Protéines tau/liquide cérébrospinal , Protéines tau/métabolisme , Peptides bêta-amyloïdes/liquide cérébrospinal , Peptides bêta-amyloïdes/métabolisme , Mâle , Sujet âgé , Femelle , Marqueurs biologiques/liquide cérébrospinal , Marqueurs biologiques/métabolisme
6.
bioRxiv ; 2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38915662

RÉSUMÉ

The spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) interaction has a major role in the normal innate and adaptive immune responses, but dysregulation of this interaction is implicated in several human diseases, including autoimmune disorders, hematological malignancies, and Alzheimer's Disease. Development of small molecule chemical probes could aid in studying this pathway both in normal and aberrant contexts. Herein, we describe the miniaturization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to measure the interaction between SYK and FCER1G in a 1536-well ultrahigh throughput screening (uHTS) format. The assay utilizes the His-SH2 domains of SYK, which are indirectly labeled with anti-His-terbium to serve as TR-FRET donor and a FITC-conjugated phosphorylated ITAM domain peptide of FCER1G to serve as acceptor. We have optimized the assay into 384-well HTS format and further miniaturized the assay into a 1536-well uHTS format. Robust assay performance has been achieved with a Z' factor > 0.8 and signal-to-background (S/B) ratio > 15. The utilization of this uHTS TR-FRET assay for compound screening has been validated by a pilot screening of 2,036 FDA-approved and bioactive compounds library. Several primary hits have been identified from the pilot uHTS. One compound, hematoxylin, was confirmed to disrupt the SYK/FECR1G interaction in an orthogonal protein-protein interaction assay. Thus, our optimized and miniaturized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the SYK and FCER1G interaction.

7.
Ann Neurol ; 96(3): 463-475, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38924596

RÉSUMÉ

OBJECTIVE: Alzheimer's disease (AD) is believed to be more common in African Americans (AA), but biomarker studies in AA populations are limited. This report represents the largest study to date examining cerebrospinal fluid AD biomarkers in AA individuals. METHODS: We analyzed 3,006 cerebrospinal fluid samples from controls, AD cases, and non-AD cases, including 495 (16.5%) self-identified black/AA and 2,456 (81.7%) white/European individuals using cutoffs derived from the Alzheimer's Disease Neuroimaging Initiative, and using a data-driven multivariate Gaussian mixture of regressions. RESULTS: Distinct effects of race were found in different groups. Total Tauand phospho181-Tau were lower among AA individuals in all groups (p < 0.0001), and Aß42 was markedly lower in AA controls compared with white controls (p < 0.0001). Gaussian mixture of regressions modeling of cerebrospinal fluid distributions incorporating adjustments for covariates revealed coefficient estimates for AA race comparable with 2-decade change in age. Using Alzheimer's Disease Neuroimaging Initiative cutoffs, fewer AA controls were classified as biomarker-positive asymptomatic AD (8.0% vs 13.4%). After adjusting for covariates, our Gaussian mixture of regressions model reduced this difference, but continued to predict lower prevalence of asymptomatic AD among AA controls (9.3% vs 13.5%). INTERPRETATION: Although the risk of dementia is higher, data-driven modeling indicates lower frequency of asymptomatic AD in AA controls, suggesting that dementia among AA populations may not be driven by higher rates of AD. ANN NEUROL 2024;96:463-475.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Marqueurs biologiques , , Protéines tau , Humains , Maladie d'Alzheimer/épidémiologie , Maladie d'Alzheimer/liquide cérébrospinal , Maladie d'Alzheimer/diagnostic , Mâle , Femelle , Sujet âgé , Prévalence , Adulte d'âge moyen , Protéines tau/liquide cérébrospinal , Peptides bêta-amyloïdes/liquide cérébrospinal , Marqueurs biologiques/liquide cérébrospinal , Sujet âgé de 80 ans ou plus , , Fragments peptidiques/liquide cérébrospinal , Maladies asymptomatiques
8.
Alzheimers Dement ; 20(6): 4043-4065, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38713744

RÉSUMÉ

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.


Sujet(s)
Maladie d'Alzheimer , Marqueurs biologiques , Protéomique , Humains , Marqueurs biologiques/liquide cérébrospinal , Marqueurs biologiques/sang , Maladie d'Alzheimer/liquide cérébrospinal , Maladie d'Alzheimer/sang , Maladie d'Alzheimer/génétique , Mâle , Sujet âgé , Femelle , Encéphale/métabolisme , Tauopathies/liquide cérébrospinal , Tauopathies/sang , Paralysie supranucléaire progressive/liquide cérébrospinal , Paralysie supranucléaire progressive/sang , Angiopathie amyloïde cérébrale/liquide cérébrospinal , Angiopathie amyloïde cérébrale/génétique , Adulte d'âge moyen , Sujet âgé de 80 ans ou plus , Protéines tau/liquide cérébrospinal
9.
bioRxiv ; 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38712030

RÉSUMÉ

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

10.
bioRxiv ; 2024 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-38659743

RÉSUMÉ

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

11.
Alzheimers Dement (N Y) ; 10(2): e12461, 2024.
Article de Anglais | MEDLINE | ID: mdl-38650747

RÉSUMÉ

INTRODUCTION: Alzheimer's disease (AD) is the predominant dementia globally, with heterogeneous presentation and penetrance of clinical symptoms, variable presence of mixed pathologies, potential disease subtypes, and numerous associated endophenotypes. Beyond the difficulty of designing treatments that address the core pathological characteristics of the disease, therapeutic development is challenged by the uncertainty of which endophenotypic areas and specific targets implicated by those endophenotypes to prioritize for further translational research. However, publicly funded consortia driving large-scale open science efforts have produced multiple omic analyses that address both disease risk relevance and biological process involvement of genes across the genome. METHODS: Here we report the development of an informatic pipeline that draws from genetic association studies, predicted variant impact, and linkage with dementia associated phenotypes to create a genetic risk score. This is paired with a multi-omic risk score utilizing extensive sets of both transcriptomic and proteomic studies to identify system-level changes in expression associated with AD. These two elements combined constitute our target risk score that ranks AD risk genome-wide. The ranked genes are organized into endophenotypic space through the development of 19 biological domains associated with AD in the described genetics and genomics studies and accompanying literature. The biological domains are constructed from exhaustive Gene Ontology (GO) term compilations, allowing automated assignment of genes into objectively defined disease-associated biology. This rank-and-organize approach, performed genome-wide, allows the characterization of aggregations of AD risk across biological domains. RESULTS: The top AD-risk-associated biological domains are Synapse, Immune Response, Lipid Metabolism, Mitochondrial Metabolism, Structural Stabilization, and Proteostasis, with slightly lower levels of risk enrichment present within the other 13 biological domains. DISCUSSION: This provides an objective methodology to localize risk within specific biological endophenotypes and drill down into the most significantly associated sets of GO terms and annotated genes for potential therapeutic targets.

12.
Front Neurol ; 15: 1320727, 2024.
Article de Anglais | MEDLINE | ID: mdl-38601333

RÉSUMÉ

Background: The current study examined the sensitivity of two memory subtests and their corresponding learning slope metrics derived from the African Neuropsychology Battery (ANB) to detect amyloid pathology and APOEε4 status in adults from Kinshasa, the Democratic Republic of the Congo. Methods: 85 participants were classified for the presence of ß-amyloid pathology and based on allelic presence of APOEε4 using Simoa. All participants were screened using CSID and AQ, underwent verbal and visuospatial memory testing from ANB, and provided blood samples for plasma Aß42, Aß40, and APOE proteotype. Pearson correlation, linear and logistic regression were conducted to compare amyloid pathology and APOEε4 status with derived learning scores, including initial learning, raw learning score, learning over trials, and learning ratio. Results: Our sample included 35 amyloid positive and 44 amyloid negative individuals as well as 42 without and 39 with APOEε4. All ROC AUC ranges for the prediction of amyloid pathology based on learning scores were low, ranging between 0.56-0.70 (95% CI ranging from 0.44-0.82). The sensitivity of all the scores ranged between 54.3-88.6, with some learning metrics demonstrating good sensitivity. Regarding APOEε4 prediction, all AUC values ranged between 0.60-0.69, with all sensitivity measures ranging between 53.8-89.7. There were minimal differences in the AUC values across learning slope metrics, largely due to the lack of ceiling effects in this sample. Discussion: This study demonstrates that some ANB memory subtests and learning slope metrics can discriminate those that are normal from those with amyloid pathology and those with and without APOEε4, consistent with findings reported in Western populations.

13.
Aging (Albany NY) ; 16(8): 6694-6716, 2024 04 24.
Article de Anglais | MEDLINE | ID: mdl-38663907

RÉSUMÉ

Previous research has found that living in a disadvantaged neighborhood is associated with poor health outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear regression models to conduct an epigenome-wide association study examining the association between neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune response, which may be one biological pathway how neighborhood conditions affect health. The concordance between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in living individuals.


Sujet(s)
Autopsie , Ilots CpG , Méthylation de l'ADN , Humains , Mâle , Femelle , Ilots CpG/génétique , Sujet âgé , Sujet âgé de 80 ans ou plus , Maladie d'Alzheimer/génétique , Encéphale/métabolisme , Encéphale/anatomopathologie , Caractéristiques du voisinage , Épigenèse génétique , Étude d'association pangénomique , Études de cohortes
14.
Environ Health Perspect ; 132(4): 47001, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38567968

RÉSUMÉ

BACKGROUND: Epidemiological evidence suggests air pollution adversely affects cognition and increases the risk of Alzheimer's disease (AD), but little is known about the biological effects of fine particulate matter (PM2.5, particulate matter with aerodynamic diameter ≤2.5µm) on early predictors of future disease risk. OBJECTIVES: We investigated the association between 1-, 3-, and 5-y exposure to ambient and traffic-related PM2.5 and cerebrospinal fluid (CSF) biomarkers of AD. METHODS: We conducted a cross-sectional analysis using data from 1,113 cognitively healthy adults (45-75 y of age) from the Emory Healthy Brain Study in Georgia in the United States. CSF biomarker concentrations of Aß42, tTau, and pTau, were collected at enrollment (2016-2020) and analyzed with the Roche Elecsys system. Annual ambient and traffic-related residential PM2.5 concentrations were estimated at a 1-km and 250-m resolution, respectively, and computed for each participant's geocoded address, using three exposure time periods based on specimen collection date. Associations between PM2.5 and CSF biomarker concentrations, considering continuous and dichotomous (dichotomized at clinical cutoffs) outcomes, were estimated with multiple linear/logistic regression, respectively, controlling for potential confounders (age, gender, race, ethnicity, body mass index, and neighborhood socioeconomic status). RESULTS: Interquartile range (IQR; IQR=0.845) increases in 1-y [ß:-0.101; 95% confidence interval (CI): -0.18, -0.02] and 3-y (ß:-0.078; 95% CI: -0.15, -0.00) ambient PM2.5 exposures were negatively associated with Aß42 CSF concentrations. Associations between ambient PM2.5 and Aß42 were similar for 5-y estimates (ß:-0.076; 95% CI: -0.160, 0.005). Dichotomized CSF variables revealed similar associations between ambient PM2.5 and Aß42. Associations with traffic-related PM2.5 were similar but not significant. Associations between PM2.5 exposures and tTau, pTau tTau/Aß42, or pTau/Aß42 levels were mainly null. CONCLUSION: In our study, consistent trends were found between 1-y PM2.5 exposure and decreased CSF Aß42, which suggests an accumulation of amyloid plaques in the brain and an increased risk of developing AD. https://doi.org/10.1289/EHP13503.


Sujet(s)
Polluants atmosphériques , Pollution de l'air , Maladie d'Alzheimer , Adulte , Humains , États-Unis , Matière particulaire/analyse , Polluants atmosphériques/analyse , Maladie d'Alzheimer/épidémiologie , Études transversales , Exposition environnementale/analyse , Pollution de l'air/analyse , Marqueurs biologiques/analyse
15.
Res Sq ; 2024 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-38464223

RÉSUMÉ

Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.

16.
Alzheimers Dement ; 20(4): 2538-2551, 2024 04.
Article de Anglais | MEDLINE | ID: mdl-38345197

RÉSUMÉ

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS: First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer , Méthylation de l'ADN , Humains , Maladie d'Alzheimer/génétique , Maladies neuro-inflammatoires , Matière particulaire/effets indésirables , Encéphale
17.
bioRxiv ; 2024 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-38328211

RÉSUMÉ

Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.

18.
J Alzheimers Dis ; 97(3): 1353-1363, 2024.
Article de Anglais | MEDLINE | ID: mdl-38306056

RÉSUMÉ

BACKGROUND: Alzheimer's disease (AD), the most common cause of dementia, poses a significant global burden. Diagnosis typically involves invasive and costly methods like neuroimaging or cerebrospinal fluid (CSF) biomarker testing of phosphorylated tau (p-tau) and amyloid-ß42/40 (Aß42/40). Such procedures are especially impractical in resource-constrained regions, such as the Democratic Republic of Congo (DRC). Blood-based biomarker testing may provide a more accessible screening opportunity. OBJECTIVE: This study aims to examine if AD-related blood-based biomarkers are associated with cognitive test performance in the Congolese population, where limited research has been conducted. METHODS: In this cross-sectional study of 81 Congolese individuals, cognitive assessments (Alzheimer's Questionnaire (AQ) and Community Screening Interview for Dementia (CSID)) distinguished dementia cases from controls. Blood draws were taken to assess p-tau 181 and Aß42/40 biomarkers. Relationships between the biomarkers and cognitive performance were analyzed using multiple linear regression models. RESULTS: Lower plasma Aß42/40 was significantly associated with lower CSID scores and higher AQ scores, indicative of AD (p < 0.001). These relationships were observed in healthy controls (CSID p = 0.01, AQ p = 0.03), but not in dementia cases. However, p-tau 181 did not exhibit significant associations with either measure. Factors such as age, sex, education, presence of APOEɛ4 allele, did not alter these relationships. CONCLUSIONS: Understanding relationships between AD-related screening tests and blood biomarkers is a step towards utilization of blood-based biomarker tests as a screening tool for AD, especially in resource-limited regions. Further research should be conducted to evaluate blood biomarker test efficacy in larger samples and other populations.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Humains , Maladie d'Alzheimer/diagnostic , Maladie d'Alzheimer/génétique , Études transversales , Peptides bêta-amyloïdes/liquide cérébrospinal , République démocratique du Congo , Protéines tau/liquide cérébrospinal , Marqueurs biologiques/liquide cérébrospinal , Tests neuropsychologiques , Fragments peptidiques/liquide cérébrospinal , Cognition , Dysfonctionnement cognitif/diagnostic , Dysfonctionnement cognitif/liquide cérébrospinal
19.
Neurology ; 102(5): e209162, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38382009

RÉSUMÉ

BACKGROUND AND OBJECTIVES: Fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer disease (AD) and is hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. The APOE gene, a major genetic risk factor of AD, has been hypothesized to modify the association between PM2.5 and AD. However, little prior research exists to support these hypotheses. This study investigates the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. METHODS: A cross-sectional study was conducted using brain tissue donors enrolled in the Emory Goizueta AD Research Center who died before 2020 (n = 224). Donors were assessed for AD pathology including the Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC) score. Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250 m. One-year, 3-year, and 5-year average PM2.5 concentrations before death were matched to participants' home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology and effect modification by APOE genotype, using adjusted ordinal logistic regression models. RESULTS: Among the 224 participants, the mean age of death was 76 years, and 57% had at least 1 APOE ε4 copy. Traffic-related PM2.5 was significantly associated with the CERAD score for the 1-year exposure window (odds ratio [OR] 1.92; 95% CI 1.12-3.30) and the 3-year exposure window (OR 1.87; 95% CI 1.01-3.17). PM2.5 was also associated with higher Braak stage and ABC score albeit nonsignificantly. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for the CERAD score and 1-year exposure window, OR 2.31; 95% CI 1.36-3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. DISCUSSION: Our study found traffic-related PM2.5 exposure was associated with the CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects ß-amyloid deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this association.


Sujet(s)
Maladie d'Alzheimer , Humains , Sujet âgé , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/anatomopathologie , Apolipoprotéine E4/génétique , Études transversales , Génotype , Encéphale/anatomopathologie , Apolipoprotéines E/génétique
20.
Brain ; 147(5): 1622-1635, 2024 May 03.
Article de Anglais | MEDLINE | ID: mdl-38301270

RÉSUMÉ

Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-ß and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer , Encéphale , Cholestérol , Développement de médicament , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/traitement médicamenteux , Humains , Cholestérol/métabolisme , Encéphale/métabolisme , Animaux , Développement de médicament/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE