Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Proc Biol Sci ; 290(1992): 20222248, 2023 02 08.
Article de Anglais | MEDLINE | ID: mdl-36750195

RÉSUMÉ

Declining body sizes have been documented for several species of Pacific salmon; however, whether size declines are caused mainly by ocean warming or other ecological factors, and whether they result primarily from trends in age at maturation or changing growth rates remain poorly understood. We quantified changes in mean body size and contributions from shifting size-at-age and age structure of mature sockeye salmon returning to Bristol Bay, Alaska, over the past 60 years. Mean length declined by 3%, corresponding to a 10% decline in mean body mass, since the early 1960s, though much of this decline occurred since the early 2000s. Changes in size-at-age were the dominant cause of body size declines and were more consistent than trends in age structure among the major rivers that flow into Bristol Bay. Annual variation in size-at-age was largely explained by competition among Bristol Bay sockeye salmon and interspecific competition with other salmon in the North Pacific Ocean. Warm winters were associated with better growth of sockeye salmon, whereas warm summers were associated with reduced growth. Our findings point to competition at sea as the main driver of sockeye salmon size declines, and emphasize the trade-off between fish abundance and body size.


Sujet(s)
Oncorhynchus , Saumon , Animaux , Poissons , Océan Pacifique , Mensurations corporelles
2.
PLoS One ; 10(6): e0130184, 2015.
Article de Anglais | MEDLINE | ID: mdl-26090990

RÉSUMÉ

The average sizes of Pacific salmon have declined in some areas in the Northeast Pacific over the past few decades, but the extent and geographic distribution of these declines in Alaska is uncertain. Here, we used regression analyses to quantify decadal trends in length and age at maturity in ten datasets from commercial harvests, weirs, and spawner abundance surveys of Chinook salmon Oncorhynchus tshawytscha throughout Alaska. We found that on average these fish have become smaller over the past 30 years (~6 generations), because of a decline in the predominant age at maturity and because of a decrease in age-specific length. The proportion of older and larger 4-ocean age fish in the population declined significantly (P < 0.05) in all stocks examined by return year or brood year. Our analyses also indicated that the age-specific lengths of 4-ocean fish (9 of 10 stocks) and of 3-ocean fish (5 of 10 stocks) have declined significantly (P < 0.05). Size-selective harvest may be driving earlier maturation and declines in size, but the evidence is not conclusive, and additional factors, such as ocean conditions or competitive interactions with other species of salmon, may also be responsible. Regardless of the cause, these wide-spread phenotypic shifts influence fecundity and population abundance, and ultimately may put populations and associated fisheries at risk of decline.


Sujet(s)
Saumon/physiologie , Répartition par âge , Alaska , Migration animale , Animaux , Mensurations corporelles , Femelle , Fécondité , Pêcheries , Mâle , Saumon/anatomie et histologie , Comportement sexuel chez les animaux , Maturation sexuelle
3.
PLoS One ; 8(12): e81916, 2013.
Article de Anglais | MEDLINE | ID: mdl-24349150

RÉSUMÉ

The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960's for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964-1982) with frequencies in contemporary samples (2008-2010) and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.


Sujet(s)
Chimère/génétique , Flux des gènes , Oncorhynchus keta/génétique , Saumon/génétique , Alaska , Animaux , Sélection , Conservation des ressources naturelles , Femelle , Pêcheries , Variation génétique , Génétique des populations , Génotype , Mâle , Répétitions microsatellites , Modèles génétiques , Oncorhynchus keta/classification , Phénotype , Phylogenèse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE