Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 308
Filtrer
1.
Front Microbiol ; 15: 1404652, 2024.
Article de Anglais | MEDLINE | ID: mdl-39086654

RÉSUMÉ

Introduction: Sepsis is a syndrome of organ dysfunction caused by a dysregulated host response to infection and septic shock. Currently, antibiotic therapy is the standard treatment for sepsis, but it can lead to drug resistance. The disturbance of the gut microbiota which is affected by sepsis could lead to the development of organ failure. It is reported that probiotics could shape the gut microbiota, potentially controlling a variety of intestinal diseases and promoting whole-body health. Methods: In this study, we evaluated the preventive effects of intra- and extracellular products of probiotics on sepsis. The extracellular products of Lactococcus lactis (L. lactis) were identified through the in vivo cell experiments. The preventive effect and mechanism of L. lactis extracellular products on mouse sepsis were further explored through HE staining, mouse survival rate measurement, chip analysis, etc. Results: L. lactis extracellular products increase cell survival and significantly reduce inflammatory factors secreted in a cellular sepsis model. In in vivo experiments in mice, our samples attenuated sepsis-induced pulmonary edema and inflammatory infiltrates in the lungs of mice, and reduced mortality and inflammatory factor levels within the serum of mice. Finally, the mechanism of sepsis prevention by lactic acid bacteria is suggested. Extracellular products of L. lactis could effectively prevent sepsis episodes. Discussion: In animal experiments, we reported that extracellular products of L. lactis can effectively prevent sepsis, and preliminarily discussed the pathological mechanism, which provides more ideas for the prevention of sepsis. In the future, probiotics may be considered a new way to prevent sepsis.

2.
Mater Horiz ; 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39139133

RÉSUMÉ

Localized surface plasmon resonance (LSPR) of noble metal nanoparticles can focus surrounding light onto the particle surface to boost photochemical reactions and solar energy utilization. However, the rarity and high cost of noble metals limit their applications in plasmonic photocatalysis, forcing researchers to seek low-cost alternatives. Recently, some heavily doped semiconductors with high free carrier density have garnered attention due to their metal-like LSPR properties. However, plasmonic semiconductors have complex surface structures characterized by the presence of a depletion layer, which poses challenges for active site exposure and hot carrier transfer, resulting in low photocatalytic activity. In this review, we introduce the essential characteristics and types, synthesis methods, and characterization techniques of full-spectrum plasmonic semiconductors, elucidate the mechanism of full-spectrum nonmetallic plasmonic photocatalysis, including the local electromagnetic field, hot carrier generation and transfer, the photothermal effect, and the solutions for the surface depletion layer, and summarize the applications of plasmonic semiconductors in photocatalytic environmental remediation, CO2 reduction, H2 generation, and organic transformations. Finally, we provide a perspective on full-spectrum plasmonic photocatalysis, aiming to guide the design and development of plasmonic photocatalysts.

3.
Article de Anglais | MEDLINE | ID: mdl-38954243

RÉSUMÉ

Oral microorganisms are closely related to oral health, the occurrence of some oral diseases is associated with changes in the oral microbiota, and many studies have demonstrated that traditional smoking can affect the oral microbial community. However, due to the short time since the emergence of e-cigarettes, fewer studies are comparing oral microorganisms for users of e-cigarettes versus cigarettes. We collected saliva from 40 non-smokers (NS), 46 traditional cigarette smokers (TS), and 27 e-cigarette consumers (EC), aged between 18 and 35 years. We performed 16S rRNA gene sequencing on the saliva samples collected to study the effects of e-cigarettes versus traditional cigarettes on the oral microbiome. The results showed that compared with the NS group, the alpha diversity of oral flora in saliva was altered in the TS group, with no significant change in the e-cigarette group. Compared with the NS and EC groups, the relative abundance of Actinomyces and Prevotella was increased in the TS group. However, compared with the NS and TS groups, the relative abundance of Veillonella was increased, and the relative abundance of Porphyromonas and Peptostreptococcus was decreased in the EC group. These results showed that both e-cigarettes and traditional cigarettes could alter the structure and composition of oral microbiota. The use of traditional cigarettes promotes the growth of some anaerobic bacteria, which may contribute to dental decay and bad breath over time. E-cigarettes have a different effect on the structure and composition of the oral microbial community compared to conventional cigarettes. In order to better understand the effects of e-cigarettes and traditional cigarettes on users' mouths, future studies will investigate the relationship between diseases such as dental caries and periodontitis and changes in oral microbial species levels.

4.
J Colloid Interface Sci ; 674: 823-833, 2024 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-38955013

RÉSUMÉ

Designing and developing suitable oxygen evolution reaction (OER) catalysts with high activity and stability remain challenging in electrolytic water splitting. Hence, NiFe@NC@MoS2 core-bishell composites wrapped by molybdenum disulphide (MoS2) and nitrogen-doped graphene (NC) were prepared using hydrothermal synthesis in this research. NiFe@NC@MoS2 composite exhibits excellent performance with an overpotential of 288 mV and a Tafel slope of 53.2 mV·dec-1 at a current density of 10 mA·cm-2 in 1 M KOH solution, which is superior to commercial RuO2. NC and MoS2 bishells create profuse edge active sites that enhance the adsorption ability of OOH* while lowering the overall overpotential of the product and improving its oxygen precipitation performance. The density function theory(DFT) analysis confirms that the layered MoS2 in NiFe@NC@MoS2 provides additional edge active sites and enhances electron transfer, thus increasing the intrinsic catalytic activity. This research paves a novel way for developing OER electrocatalysts with excellent catalytic performance.

5.
Med Phys ; 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39072826

RÉSUMÉ

Multi-energy computed tomography (MECT) offers the opportunity for advanced visualization, detection, and quantification of select elements (e.g., iodine) or materials (e.g., fat) beyond the capability of standard single-energy computed tomography (CT). However, the use of MECT requires careful consideration as substantially different hardware and software approaches have been used by manufacturers, including different sets of user-selected or hidden parameters that affect the performance and radiation dose of MECT. Another important consideration when designing MECT protocols is appreciation of the specific tasks being performed; for instance, differentiating between two different materials or quantifying a specific element. For a given task, it is imperative to consider both the radiation dose and task-specific image quality requirements. Development of a quality control (QC) program is essential to ensure the accuracy and reproducibility of these MECT applications. Although standard QC procedures have been well established for conventional single-energy CT, the substantial differences between single-energy CT and MECT in terms of system implementations, imaging protocols, and clinical tasks warrant QC tests specific to MECT. This task group was therefore charged with developing a systematic QC program designed to meet the needs of MECT applications. In this report, we review the various MECT approaches that are commercially available, including information about hardware implementation, MECT image types, image reconstruction, and postprocessing techniques that are unique to MECT. We address the requirements for MECT phantoms, review representative commercial MECT phantoms, and offer guidance regarding homemade MECT phantoms. We discuss the development of MECT protocols, which must be designed carefully with proper consideration of MECT technology, imaging task, and radiation dose. We then outline specific recommended QC tests in terms of general image quality, radiation dose, differentiation and quantification tasks, and diagnostic and therapeutic applications.

6.
Adv Sci (Weinh) ; : e2405211, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39049684

RÉSUMÉ

Large-scale particle manipulation with single-particle precision and further flexible patterning into functional structures is of huge potentials in many fields including bio-optoelectronic sensing, colloidal lithography, and wearable devices. However, it is very challenging for the precision manipulation and flexible patterning of particles on complicated curved and functional substrates. In this work, opto-thermal-tension (OTT) mediated precision large-scale particle manipulation and flexible patterning based on soap film are reported. Flexible manipulation and subsequent patterning of particles with single-particle resolution is realized by optothermal regulated surface tension on soap films. Reconfigurable patterning of particle structures with different shapes as well as large-scale ordered structures (up to 2000 particles) with particle sizes spanning two orders of magnitude (0.5-20 µm) is realized using this OTT mediation method. Importantly, due to the high flexibility of soap films, the patterned large-scale particle structures can be non-destructively transferred to curved and rough substrates, including rough iron pipe surface, leaf and skin surface. This OTT mediated method provides a new method for precision large-scale particle manipulation and flexible patterning with high versatility on complicated functional substrates, with great potentials for optoelectronic and biophotonic sensing and wearable device design on different curved and rough functional substrates.

7.
Int Dent J ; 2024 Jun 23.
Article de Anglais | MEDLINE | ID: mdl-38914506

RÉSUMÉ

BACKGROUND AND PURPOSE: Long noncoding RNA (lncRNA) dysregulation has been reported to play a pivotal role in the development of cancers. In this study, we aimed to screen the key lncRNA in oral squamous cell carcinoma (OSCC) via bioinformatics analysis and further validate the function of lncRNA in vitro and in vivo. METHODS: Bioinformatics analysis was conducted to identify differentially expressed lncRNAs between control and OSCC samples. Quantitative real-time-polymerase chain reaction was employed to detect the expression of differentially expressed lncRNAs in human tongue squamous cell carcinoma and human oral keratinocytes cell lines. The biological function of lncRNA and its mechanism were examined via the experimental assessment of the cell lines with the lncRNA overexpressed and silenced. Additionally, to further explore the function of lncRNA in the progression of OSCC, xenograft tumour mouse models were established using 25 mice (5 groups, each with 5 mice). Tumour formation was observed at 2 weeks after the cell injection, and the tumours were resected at 5 weeks post-implantation. RESULTS: Two lncRNAs, LINC00958 and AFAP1-AS1, were found to be correlated with the prognosis of OSCC. The results of the quantitative real-time-polymerase chain reaction indicated that the 2 lncRNAs were highly expressed in OSCC. In combination with the previous literature, we found AFAP1-AS1 to be a potentially important biomarker for OSCC. Thus, we further investigated its biological function and found that AFAP1-AS1 silencing inhibited cell proliferation, migration, and invasion whereas AFAP1-AS1 overexpression reversed the effect of AFAP1-AS1 silencing (P < .05). Mechanism analysis revealed that AFAP1-AS1 regulated the development of OSCC through the ubiquitin-mediated proteolysis pathway. CONCLUSIONS: AFAP1-AS1 is an oncogene that aggravates the development of OSCC via the ubiquitin-mediated proteolysis pathway. It also provides a novel potential therapy for OSCC.

8.
ACS Nano ; 18(29): 19391-19400, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38904270

RÉSUMÉ

Robotic nanomanipulation emerges as a cutting-edge technique pivotal for in situ nanofabrication, advanced sensing, and comprehensive material characterization. In this study, we develop an optical robotic platform (ORP) for the dynamic manipulation of colloidal nanoparticles (NPs). The ORP incorporates a human-in-the-loop control mechanism enhanced by real-time visual feedback. This feature enables the generation of custom optical landscapes with adjustable intensity and phase configurations. Based on the ORP, we achieve the parallel and reconfigurable manipulation of multiple NPs. Through the application of spatiotemporal phase gradient-reversals, our platform demonstrates capabilities in trapping, binding, rotating, and transporting NPs across custom trajectories. This presents a previously unidentified paradigm in the realm of in situ nanomanipulation. Additionally, the ORP facilities a "capture-and-print" assembly process, utilizing a strategic interplay of phase and intensity gradients. This process operates under a constant laser power setting, streamlining the assembly of NPs into any targeted configuration. With its precise positioning and manipulation capabilities, underpinned by the spatiotemporal modulation of optical gradients, the ORP will facilitate the development of colloid-based sensors and on-demand fabrication of nanodevices.

9.
BMC Geriatr ; 24(1): 404, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38714944

RÉSUMÉ

BACKGROUND: Evidence on the effectiveness of influenza vaccination in the elderly is limited, and results are controversial. There are also few reports from China. METHODS: We conducted a test-negative case-control study design to estimate influenza vaccine effectiveness (VE) against laboratory-confirmed influenza-associated visits among elderly (aged ≥ 60 years) across four influenza seasons in Ningbo, China, from 2018 to 19 to 2021-22. Influenza-positive cases and negative controls were randomly matched in a 1:1 ratio according to age, sex, hospital, and date of influenza testing. We used logistic regression models to compare vaccination odds ratios (ORs) in cases to controls. We calculated the VE as [100% × (1-adjusted OR)] and calculated the 95% confidence interval (CI) around the estimate. RESULTS: A total of 30,630 elderly patients tested for influenza with virus nucleic acid or antigen during the study period. After exclusions, we included 1 825 influenza-positive cases and 1 825 influenza-negative controls. Overall, the adjusted VE for influenza-related visits was 63.5% (95% CI, 56.3-69.5%), but varied by season. Influenza VE was 59.8% (95% CI, 51.5-66.7%) for influenza A and 89.6% (95% CI, 77.1-95.3%) for influenza B. The VE for ages 60-69 and 70-79 was 65.2% (95% CI, 55.4-72.9%) and 69.8% (95% CI, 58.7-77.9%), respectively, but only 45.4% (95% CI, 6.2-68.2%) for ages 80 and over. CONCLUSIONS: Standard-dose inactivated influenza vaccine has shown good protection in the elderly in China. However, protection may not be satisfactory in people aged 80 years and older.


Sujet(s)
Vaccins antigrippaux , Grippe humaine , , Vaccins inactivés , Humains , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Grippe humaine/prévention et contrôle , Grippe humaine/épidémiologie , Grippe humaine/diagnostic , Sujet âgé , Mâle , Femelle , Chine/épidémiologie , Études cas-témoins , Vaccins inactivés/administration et posologie , Adulte d'âge moyen , Sujet âgé de 80 ans ou plus , Peuples d'Asie de l'Est
10.
Adv Mater ; 36(30): e2404738, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38695468

RÉSUMÉ

Plasmonic semiconductors with broad spectral response hold significant promise for sustainable solar energy utilization. However, the surface inertness limits the photocatalytic activity. Herein, a novel approach is proposed to improve the body crystallinity and increase the surface oxygen vacancies of plasmonic tungsten oxide by the combination of hydrochloric acid (HCl) regulation and light irradiation, which can promote the adsorption of tert-butyl alcohol (TBA) on plasmonic tungsten oxide and overcome the hindrance of the surface depletion layer in photocatalytic alcohol dehydration. Additionally, this process can concentrate electrons for strong plasmonic electron oscillation on the near surface, facilitating rapid electron transfer within the adsorbed TBA molecules for C-O bond cleavage. As a result, the activation barrier for TBA dehydration is significantly reduced by 93% to 6.0 kJ mol-1, much lower than that of thermocatalysis (91 kJ mol-1). Therefore, an optimal isobutylene generation rate of 1.8 mol g-1 h-1 (selectivity of 99.9%) is achieved. A small flow reaction system is further constructed, which shows an isobutylene generation rate of 12 mmol h-1 under natural sunlight irradiation. This work highlights the potential of plasmonic semiconductors for efficient photocatalytic alcohol dehydration, thereby promoting the sustainable utilization of solar energy.

11.
Vaccine ; 42(20): 125986, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-38762359

RÉSUMÉ

BACKGROUND: The impact of repeated influenza vaccination on vaccine effectiveness has been a topic of debate. Conducting more multinational, multicenter studies in different influenza seasons is crucial for a better understanding of this issue. There is a lack of comprehensive related research reports in China. METHODS: Using the Regional Health Information Platform, we conducted a test-negative case-control study to evaluate the impact of repeated vaccination on the prevention of laboratory-confirmed influenza in individuals aged 60 and above in Ningbo during four influenza seasons from 2018-19 to 2021-22. Influenza-positive cases and negative controls were matched in a 1:1 ratio based on the visiting hospital and the date of influenza testing. Propensity score adjustment and multivariable logistic regression were used to estimate risk and address confounding effects. RESULTS: During the study period, a total of 30,630 elderly patients underwent influenza virus nucleic acid or antigen testing. After exclusions, we included 1976 cases of influenza-positive and 1976 cases of influenza-negative controls. Multivariable logistic regression analysis revealed that individuals receiving the vaccine in two consecutive seasons did not exhibit a significantly increased risk of influenza illness compared to those receiving the vaccine only in the current season (adjusted odds ratio: 1.22, 95% confidence interval: 0.94-1.58). However, the risk of influenza illness was found to be elevated in individuals who received the vaccine only in the previous season (adjusted odds ratio: 1.56, 95% confidence interval: 1.15-2.10) and even further elevated in those who had not received the vaccine in either of the consecutive two seasons (adjusted odds ratio: 3.39, 95% confidence interval: 2.80-4.09). CONCLUSIONS: Regardless of the vaccination history in the previous season, receiving the current season influenza vaccine is the best choice for the elderly population. Our study supports the initiative to vaccinate elderly individuals against influenza annually.


Sujet(s)
Vaccins antigrippaux , Grippe humaine , Vaccination , , Humains , Vaccins antigrippaux/immunologie , Vaccins antigrippaux/administration et posologie , Grippe humaine/prévention et contrôle , Grippe humaine/immunologie , Sujet âgé , Études cas-témoins , Femelle , Mâle , Chine/épidémiologie , Adulte d'âge moyen , Saisons , Sujet âgé de 80 ans ou plus , Modèles logistiques
12.
Angew Chem Int Ed Engl ; 63(33): e202408193, 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-38802317

RÉSUMÉ

Hydrolysis of ammonia borane (NH3BH3, AB) involves multiple undefined steps and complex adsorption and activation, so single or dual sites are not enough to rapidly achieve the multi-step catalytic processes. Designing multi-site catalysts is necessary to enhance the catalytic performance of AB hydrolysis reactions but revealing the matching reaction mechanisms of AB hydrolysis is a great challenge. In this work, we propose to construct RuPt-Ti multi-site catalysts to clarify the multi-site tandem activation mechanism of AB hydrolysis. Experimental and theoretical studies reveal that the multi-site tandem mode can respectively promote the activation of NH3BH3 and H2O molecules on the Ru and Pt sites as well as facilitate the fast transfer of *H and the desorption of H2 on Ti sites at the same time. RuPt-Ti multi-site catalysts exhibit the highest turnover frequency (TOF) of 1293 min-1 for AB hydrolysis reaction, outperforming the single-site Ru, dual-site RuPt and Ru-Ti catalysts. This study proposes a multi-site tandem concept for accelerating the dehydrogenation of hydrogen storage material, aiming to contribute to the development of cleaner, low-carbon, and high-performance hydrogen production systems.

13.
Nano Lett ; 24(21): 6433-6440, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38747334

RÉSUMÉ

Soap bubbles exhibit abundant fascinating phenomena throughout the entire life of evolution with different fundamental physics governing them. Nevertheless, the complicated dynamics of small objects in soap films are still unrevealed. Here, we report the first observation of spontaneous particle ordering in a complicated galaxy of soap films without any external energy. The balance of interfacial tension at two liquid-gas interfaces is theoretically predicted to govern belted wetted particles (BWPs) traveling along a specified path spontaneously. Such spontaneous particle path-finding is found to depend on the particle size and hydrophilic properties. Spontaneous particle sorting is directly realized via these discrete and distinctive paths for different particles. The deformation of the soap membrane facilitates 1D/2D particle organization along the path. This observation represents the discovery of a new spontaneous order phenomenon in soap film systems and provides a new energy-free approach for particle separation and soft colloidal crystal assembly.

14.
iScience ; 27(5): 109745, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38706839

RÉSUMÉ

Zeolite-encaged metal nanoparticles (NPs) catalysts are emerging as a new frontier owing to their superior ability to stabilize the structure and catalytic performance in the thermal and environmental catalytic reaction. However, the pore size below 2 nm of the conventional zeolites usually limits the accessibility of metal active sites. Herein, Co-Cu NPs of about 2.5-3.5 nm were uniformly encapsulated in the intracrystalline mesoporous Silicalite-1 (S-1) through alkali-treatment ligand-assisted strategy. The obtained sample (termed CoxCu1-x@HS-1) exhibited efficient activity and stability in the ammonia borane hydrolysis with the highest TOF value of 21.46 molH2·molMe-1·min-1. UV-vis DRS spectra indicated that intracrystalline mesopores have greatly improved the openness and accessibility of the active sites, thus improving their catalytic performance. The introduction of Cu regulates the electronic properties of Co, further increasing hydrogen production activity. This research creates new prospects to design other high-performance hierarchical porous zeolite-confined metal/metal oxide catalysts.

15.
iScience ; 27(5): 109715, 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38706847

RÉSUMÉ

Hydrogen generation from boron hydride is important for the development of hydrogen economy. Cobalt (Co) element has been widely used in the hydrolysis of boron hydride. Pyrolysis is a common method for materials synthesis in catalytic fields. Herein, Co-based nanocomposites derived from the pyrolysis of organic metal precursors and used for hydrolysis of boron hydride are summarized and discussed. The different precursors consisting of MOF, supported, metal, and metal phosphide precursors are summarized. The catalytic mechanism consisting of dissociation mechanism based on oxidative addition-reduction elimination, pre-activation mechanism, SN2 mechanism, four-membered ring mechanism, and acid-base mechanism is intensively discussed. Finally, conclusions and outlooks are conveyed from the design of high-efficiency catalysts, the characterization of catalyst structure, the enhancement of catalytic activities, the investigation of the catalytic mechanism, and the catalytic stability of active structure. This review can provide guidance for designing high-efficiency catalysts and boosting development of hydrogen economy.

16.
Nano Lett ; 2024 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-38602330

RÉSUMÉ

The miniaturization of biomedical microrobots is crucial for their in vivo applications. However, it is challenging to reduce their size while maintaining their biomedical functions. To resolve this contradiction, we propose a semiphysical design concept for developing miniaturized microrobots, in which invisible components such as light beams are utilized to replace most of the physical parts of a microrobot, thus minimizing its physical size without sacrificing its biomedical functions. According to this design, we have constructed a semiphysical microrobot (SPM) composed of main light beam, light-responsive microparticle, and auxiliary light beam, serving as the actuation system, recognition part, and surgical claws, respectively. Based on the functions of actuation, biosensing, and microsurgery, a SPM has been applied for a series of applications, including thrombus elimination at the branch vessel, stratified removal of multilayer thrombus, and biosensing-guided microsurgery. The proposed semiphysical design concept should bring new insight into the development of miniaturized biomedical microrobots.

17.
Nanoscale ; 16(18): 9029-9035, 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38629997

RÉSUMÉ

Precise monitoring and quantification of H2O2 is highly urgent and of great significance for biomedicine, food safety, environmental monitoring, etc. Herein, we proposed a facile near-infrared (NIR) excited fluorescent probe composed of upconversion nanoparticles (UCNPs) and non-metallic plasmonic WO3-x for ultrasensitive quantitative H2O2 detection. Plasmonic WO3-x with oxygen vacancy-induced LSPR achieved over 680-fold enhancement of upconversion fluorescence at 520 nm, and also acts as the sensitive recognition site for H2O2. H2O2 quenched the LSPR band of plasmonic WO3-x, further significantly influencing adjacent fluorescence signals depending on its concentration. The probe exhibits a good linear response to H2O2 with a low detection limit (10-9 M) and a wide concentration range (0-50 µM), and shows satisfactory application in the determination of H2O2 in blood and milk. This work may provide new ideas for the development of non-invasive fluorescent nanoprobes and plasmon-assisted biochemical detection methods.

18.
Adv Sci (Weinh) ; 11(22): e2308040, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38581142

RÉSUMÉ

The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.

19.
ChemSusChem ; 17(14): e202301779, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-38416074

RÉSUMÉ

Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.

20.
iScience ; 27(3): 109064, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38375219

RÉSUMÉ

Titanium silicate zeolite (TS-1) is widely used in the research on selective oxidations of organic substrates by H2O2. Compared with the chlorohydrin process and the hydroperoxidation process, the TS-1 catalyzed hydroperoxide epoxidation of propylene oxide (HPPO) has advantages in terms of by-products and environmental friendliness. This article reviews the latest progress in propylene epoxidation catalyzed by TS-1, including the HPPO process and gas phase epoxidation. The preparation and modification of TS-1 for green and sustainable production are summarized, including the use of low-cost feedstocks, the development of synthetic routes, strategies to enhance mass transfer in TS-1 crystal and the enhancement of catalytic performance after modification. In particular, this article summarizes the catalytic mechanisms and advanced characterization techniques for propylene epoxidation in recent years. Finally, the present situation, development prospect and challenge of propylene epoxidation catalyzed by TS-1 were prospected.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE