Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.219
Filtrer
1.
Neural Regen Res ; 20(2): 557-573, 2025 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38819067

RÉSUMÉ

JOURNAL/nrgr/04.03/01300535-202502000-00032/figure1/v/2024-05-28T214302Z/r/image-tiff Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.

2.
Br J Anaesth ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38969535

RÉSUMÉ

BACKGROUND: Postoperative delirium remains prevalent despite extensive research through randomised trials aimed at reducing its incidence. Understanding trial characteristics associated with interventions' effectiveness facilitates data interpretation. METHODS: Trial characteristics were extracted from eligible trials identified through two systematic literature searches. Multivariable meta-regression was used to investigate trial characteristics associated with effectiveness estimated using odds ratios. Meta-analysis was used to investigate pooled effectiveness. RESULTS: We identified 201 eligible trials. Compared with China, trials from the USA/Canada (ratio of odds ratio, 1.89; 95% confidence interval, 1.45-2.45) and Europe/Australia/New Zealand (1.67; 1.29-2.18) had an 89% and 67% higher odds ratio, respectively, suggesting reduced effectiveness. The effectiveness was enhanced when the incidence of postoperative delirium increased (0.85; 0.79-0.92, per 10% increase). Trials with concerns related to deviations from intended interventions reported increased effectiveness compared with those at low risk (0.69; 0.53-0.90). Compared with usual care, certain interventions appeared to have reduced the incidence of postoperative delirium in low-risk trials with low-to-moderate certainty of evidence. However, these findings should be considered inconclusive because of challenges in grouping heterogeneous interventions, the limited number of eligible trials, the prevalence of small-scale studies, and potential publication bias. CONCLUSIONS: The effectiveness of postoperative delirium trials varied based on the region of trial origin, the incidence of delirium, and the risk of bias. The limitations caution against drawing definitive conclusions from different bodies of evidence. These findings highlight the imperative need to improve the quality of research on a global scale. SYSTEMATIC REVIEW PROTOCOL: PROSPERO (CRD42023413984).

3.
Proc Natl Acad Sci U S A ; 121(28): e2320222121, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38954542

RÉSUMÉ

Artificial skins or flexible pressure sensors that mimic human cutaneous mechanoreceptors transduce tactile stimuli to quantitative electrical signals. Conventional trial-and-error designs for such devices follow a forward structure-to-property routine, which is usually time-consuming and determines one possible solution in one run. Data-driven inverse design can precisely target desired functions while showing far higher productivity, however, it is still absent for flexible pressure sensors because of the difficulties in acquiring a large amount of data. Here, we report a property-to-structure inverse design of flexible pressure sensors, exhibiting a significantly greater efficiency than the conventional routine. We use a reduced-order model that analytically constrains the design scope and an iterative "jumping-selection" method together with a surrogate model that enhances data screening. As an exemplary scenario, hundreds of solutions that overcome the intrinsic signal saturation have been predicted by the inverse method, validating for a variety of material systems. The success in property design on multiple indicators demonstrates that the proposed inverse design is an efficient and powerful tool to target multifarious applications of flexible pressure sensors, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces.

4.
J Colloid Interface Sci ; 674: 823-833, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38955013

RÉSUMÉ

Designing and developing suitable oxygen evolution reaction (OER) catalysts with high activity and stability remain challenging in electrolytic water splitting. Hence, NiFe@NC@MoS2 core-bishell composites wrapped by molybdenum disulphide (MoS2) and nitrogen-doped graphene (NC) were prepared using hydrothermal synthesis in this research. NiFe@NC@MoS2 composite exhibits excellent performance with an overpotential of 288 mV and a Tafel slope of 53.2 mV·dec-1 at a current density of 10 mA·cm-2 in 1 M KOH solution, which is superior to commercial RuO2. NC and MoS2 bishells create profuse edge active sites that enhance the adsorption ability of OOH* while lowering the overall overpotential of the product and improving its oxygen precipitation performance. The density function theory(DFT) analysis confirms that the layered MoS2 in NiFe@NC@MoS2 provides additional edge active sites and enhances electron transfer, thus increasing the intrinsic catalytic activity. This research paves a novel way for developing OER electrocatalysts with excellent catalytic performance.

5.
J Occup Health ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955204

RÉSUMÉ

OBJECTIVE: Although studies have shown that Work-related Musculoskeletal Disorders (WMSDs) are common and continue to be a main source of disability and work time loss, there are few reports on elbow WMSDs. The aim of this study was to explore the prevalence and associated factors of elbow WMSDs. METHODS: The valid questionnaires of 57501 workers from 15 different industries nationwide were collected and the Chi-square test and logistic-regression-analysis were applied to reveal the prevalence and risk factors of elbow. RESULTS: The findings indicated that prevalence of elbow WMSDs among workers was 7.3%. The prevalence of elbow WMSDs in toy manufacturing was 21.3%, which significantly higher than that in other industries (P<0.05). Logistic regression analysis showed that aged 40 and above, married, very poor health, left-handed, lifting weights (more than 20 kg each time) , work requiring upper limb or hand force, work in an uncomfortable position, repetitive operations within one minute, using vibrating tools, work involves cold, cool winds or temperature changes, work being completed in the same workshop, work being done outdoors, frequent deal with customers , two shifts, often work overtime, staff shortage, often work for colleagues were the risk factors of elbow WMSDs.The higer education level and monthly income, and enough rest time were the protective factors of elbow WMSDs. CONCLUSION: The toy manufacturing is a high-risk industry for elbow WMSDs. The publicity and education of ergonomics knowledge should be strengthened, and the workers' ergonomics awareness should be improved to reduce the impact of WMSDs.

6.
Biomacromolecules ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956952

RÉSUMÉ

The surface of food processing equipment is easily affected by biofilm-forming bacteria, leading to cross-contamination and food safety hazards. The critical issue is how to endow the surface of contact materials with antibacterial and antibiofilm abilities. A sustainable, stable, and antibiofilm coating was prepared by phase transition of glutenin. The disulfide bonds in glutenin were reduced by tris(2-carboxyethyl)phosphine, triggering the phase transition of glutenin. Hydrophobic interactions and intermolecular disulfide bonds may be the primary forces. Furthermore, the phase-transited products formed a nanoscale coating on the surface of stainless steel and glass under their own adhesion force and gravity. The coating exhibited good stability in harsh environments. More importantly, after 3 h of direct contact, the colony of Escherichia coli and Staphylococcus aureus decreased by one logarithm. The amount of biofilm was observed to be significantly decreased through optical microscopy and scanning electron microscopy. This article provides a foundational module for developing novel coatings.

7.
Int J Surg ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38959104

RÉSUMÉ

BACKGROUND: The therapeutic strategy for patients with spontaneous rupture of the esophagus includes surgical repair, endoscopic therapy, supportive care, and others. However, no evidence exists to direct clinical decision-making regarding the choice of operative and nonoperative management. The aim of this study was to determine the clinical efficacy of different therapeutic strategies in both general and stratified patients. METHODS: This study retrospectively analyzed a consecutive cohort of 101 patients at nine tertiary referral hospital centers in China. Patients were divided into operative and nonoperative groups based on the initial treatment. Short-term outcomes, including 90-day mortality, length of hospital stay, and postoperative leakage were compared. Subgroup analysis was performed based on treatment timing and Pittsburgh perforation severity score (PSS). RESULTS: Of 101 patients, 60 (58.4%) underwent operative management. A significant difference of 90-day mortality between operative and nonoperative groups was observed (15.0% vs. 34.1%, P=0.031). Operative management tend to yield similar therapeutic benefits in timely (OR, 0.250; 95% CI, 0.05-1.14, P=0.073) and delayed (OR, 0.42; 95% CI, 0.12-1.47, P=0.175) treatment groups. Based on PSS stratification, operative management significantly decreased the risk of 90-day mortality (OR, 0.211; 95% CI, 0.064-0.701; P=0.011) for patients in low- and moderate-risk groups but may be detrimental for patients in high-risk group (OR, 1.333; 95% CI, 0.233-7.626; P=0.746). CONCLUSIONS: Operative management might be superior to nonoperative management for low- and moderate-risk patients with spontaneous rupture of the esophagus. However, for patients at high risks, operative management might not provide additional benefits compared with nonoperative management. Further research involving larger sample sizes is required for accurate patient stratification and conclusive evidence-based guideline.

8.
Sci Rep ; 14(1): 15364, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965259

RÉSUMÉ

With the gradual shift of coal mining to the western coal mining region of China, floor heave in weakly cemented mudstone roadways has become an issue affecting the safety and efficiency of coal mine production. Additionally, different mining rates can lead to fluctuating support stresses on the roof and floor of weakly cemented mudstone roadways. Therefore, obtaining a comprehensive understanding of the mechanical properties of weakly cemented mudstone at different loading rates is conducive to improving the issue of floor heave in such roadways and provides a theoretical basis for further study. In this context, a series of uniaxial mechanical tests with concurrent acoustic emission monitoring were conducted on specimens of weakly cemented mudstone under various loading rates (0.005, 0.01, 0.05, and 0.1 mm/s). The stress‒strain and acoustic emission response curves were obtained to effectively characterize the strength, deformation, damage, macroscale instability, and crack propagation characteristics of the mudstone under the influence of loading rate effects. The research results support the following findings: (1) With increasing loading rate, the peak strength and elastic modulus of weakly cemented mudstone significantly increase, while the peak axial strain and peak radial deformation significantly decrease. (2) With increasing loading rate, the stress required to trigger the expansion of weakly cemented mudstone gradually increases, and a significant power-law relationship arises between the strain of the mudstone at the start of expansion and the loading rate. (3) With increasing loading rate, the acoustic emission ringing count of weakly cemented mudstone increases: The failure of weakly cemented mudstone changes from small-range progressive failure to sudden failure, and the failure mode transitions from shear failure to tensile‒shear composite failure. (4) The studied mudstone damage variables increase with increasing loading rate, following an approximate exponential function. The conclusions obtained in this work can provide a theoretical basis for the evolution mechanism and control of floor heave in deep roadway mining.

9.
Sci Rep ; 14(1): 15411, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965337

RÉSUMÉ

Dielectric Elastomer Minimum Energy Structures (DEMES) have the ability of actively adjusting their shape to accommodate complex scenarios, understanding the actuation mechanism of DEMES is essential for their effective design and control, which has rendered them a focus of research in the field of soft robotics. The actuation ability of DEMES is usually influenced by external conditions, among which the electromechanical properties of DE materials are highly sensitive to temperature changes, and the pre-stretch ratio of DE materials has a significant impact on the dynamic performance of DEMES. Therefore, it is necessary to study the effects of temperature and pre-stretch ratio on the nonlinear dynamic behavior of DEMES. In this paper, in response to the lack of research on the influence of DE pre-stretch ratio on the actuation characteristics of DEMES, this paper proposes a systematic modeling and analysis framework that comprehensively considers pre-stretch factors, temperature factors, and viscoelastic factors, and establishes the motion control equation of DEMES affected by the coupling effect of DE pre-stretch ratio and temperature. The proposed analytical framework is used to analyze the evolution of the electromechanical response of DEMES under voltage excitation under the coupling of DE pre-stretch ratio and temperature. The results indicate that the bending angle, inelastic deformation, resonant frequency, and dynamic stability of DEMES can be jointly adjusted by the DE pre-stretch ratio and ambient temperature. A low pre-stretch ratio of DE can lead to dynamic instability of DEMES, while appropriate temperature conditions and higher pre-stretch ratios can significantly improve the actuation ability of DEMES. This can provide theoretical guidance for the design and deformation control of DEMES.

10.
Sci Rep ; 14(1): 15232, 2024 07 02.
Article de Anglais | MEDLINE | ID: mdl-38956281

RÉSUMÉ

Intravenous immunoglobulin (IVIG) resistance in Kawasaki disease (KD) was associated with coronary artery lesions. Neutrophil percentage-to-albumin ratio (NPAR) is an index of mortality in several inflammatory diseases. This study focused on the association of NPAR with IVIG- resistance in KD. Clinical and laboratory data of 438 children with KD before IVIG treatment were retrospectively analyzed. Notably, high NPAR was associated with older age, high WBC, NP, ALT, total bilirubin and CRP, as well as with high the incidence of IVIG-resistance, and with low hemoglobin (Hb), PLT, ALB and sodium levels. NPAR (OR: 2.366, 95% CI: 1.46-3.897, p = 0.001) and Hb (OR: 0.967, 95% CI: 0.944-0.989, p = 0.004) were independent risk factors for IVIG-resistance. NPAR showed linear relation with IVIG-resistance (p for nonlinear = 0.711) and the nonlinear correlation was found between IVIG-resistance and Hb (p for nonlinear = 0.002). The predictive performance of NPAR was superior to Beijing model (z = 2.193, p = 0.028), and not inferior to Chongqing model (z = 0.983, p = 0.326) and the combination of NPAR and Hb (z = 1.912, p = 0.056). These findings revealed that NPAR is a reliable predictor of IVIG-resistance.


Sujet(s)
Marqueurs biologiques , Résistance aux substances , Immunoglobulines par voie veineuse , Maladie de Kawasaki , Granulocytes neutrophiles , Humains , Maladie de Kawasaki/sang , Maladie de Kawasaki/traitement médicamenteux , Immunoglobulines par voie veineuse/usage thérapeutique , Mâle , Femelle , Enfant d'âge préscolaire , Nourrisson , Marqueurs biologiques/sang , Études rétrospectives , Enfant , Albumines/métabolisme
11.
Orthop Surg ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982570

RÉSUMÉ

BACKGROUND: Osteoporosis is a common metabolic disorder that significantly impacts quality of life in the elderly population. Macrophages play a crucial role in the development of osteoporosis by regulating bone metabolism through cytokine secretion. However, there is a lack of scholarly literature in the field of bibliometrics on this topic. OBJECTIVE: This study provides a detailed analysis of the research focus and knowledge structure of macrophage studies in osteoporosis using bibliometrics. METHODS: The scientific literature on macrophage research in the context of osteoporosis, retrieved from the Web of Science Core Collection (WoSCC) database spanning from January 1999 to December 2023, has been incorporated for bibliometric examination. The data is methodically analyzed and visually represented using analytical and visualization tools including VOSviewer, CiteSpace, Scimago Graphica, the Bibliometrix R package, and Pajek. RESULTS AND CONCLUSIONS: In the last quarter-century, there has been a consistent rise in the quantity of scholarly publications focusing on the relationship between macrophages and osteoporosis, resulting in a total of 1499 research documents. These studies have originated from 45 different countries, with China, South Korea, and the United States being the most prominent contributors, and the United States having the highest frequency of citations. Noteworthy research institutions involved in this field include Shanghai Jiao Tong University, Wonkwang University, Huazhong University of Science and Technology, and Seoul National University. The Journal of Bone and Mineral Research is widely regarded as the premier and most frequently referenced publication in the field. These publications involve the collaboration of 8744 authors, with Lee Myeung Su contributing the most articles, and Takayanagi being the most co-cited author. Key emerging research focal points are encapsulated in keywords such as "mTOR," "BMSCs," "bone regeneration," and "exosome." The relationships between exosome from macrophage sources and those from BMSCs, along with the regulatory role of the mTOR signaling pathway on macrophages, represent crucial directions for future development in this field. This study represents the inaugural comprehensive bibliometric analysis detailing trends and advancements in macrophage research within the osteoporosis domain. It delineates recent frontiers and hotspots, providing valuable insights for researchers in this particular area of study.

12.
J Gastrointest Oncol ; 15(3): 1165-1178, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38989440

RÉSUMÉ

Background: Pancreatic cancer is a highly aggressive malignancy with poor prognosis, and there is an urgent need to understand its molecular mechanisms for early diagnosis and treatment. Despite surgical resection being the only effective treatment, most patients are diagnosed at an advanced stage, missing the optimal window for therapy. Identifying novel biomarkers is crucial for prognostic assessment, treatment planning, and early intervention. Ephrin A4 (EFNA4), a member of the receptor tyrosine kinase family, is involved in vascular and epithelial development via regulation of cell migration and rejection. However, the role of EFNA4 in pancreatic cancer has not been reported. Therefore, our study aimed to clarify the role of EFNA4 in pancreatic cancer through bioinformatics analysis and vitro experiments. Methods: The expression of EFNA4 and its potential value as a diagnostic and prognostic biomarker in pancreatic cancer was analyzed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Profiling Interactive Analysis (GEPIA) database. According to the expression level of EFNA4, patients were divided into high expression group and low expression group, and the correlation between overall survival (OS) and disease-free survival (DFS) with different expression levels of EFNA4 and clinical parameters were analyzed. Subsequently, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect EFNA4 expression. The proliferation, invasion, and cloning ability of the cells were detected via Cell Counting Kit 8 (CCK8), Transwell, and plate cloning assays, respectively. Results: EFNA4 is highly expressed in pancreatic cancer, and upregulation of EFNA4 is associated with poor prognosis. In this study, EFNA4 expression was correlated with T stage and TNM (tumor-node-metastasis) stage of pancreatic cancer, and the median survival time and progression-free survival (PFS) were worse in those with high EFNA4 expression (394 days) than in those with low expression (525 days) [hazard ratio (HR): 1.47, 95% confidence interval (CI): 1.00-2.16, P=0.047]. In addition, EFNA4 was also found to be involved in the regulation of signal pathways such as cell adhesion, cyclic AMP, insulin secretion, pancreatic secretion, and protein digestion and absorption. In vitro experiments demonstrated that EFNA4 knockdown significantly inhibited the proliferation, cloning ability, and invasiveness of the PANC-1 and SW1990 pancreatic cancer cell lines. Conclusions: The abnormal expression of EFNA4 in pancreatic cancer is associated with poor prognosis. Knockout of EFNA4 gene could significantly inhibit the proliferation and invasion of pancreatic cancer cells. Therefore, EFNA4 may be one of the molecular targets for poor prognosis of patients with pancreatic cancer.

13.
Adv Mater ; : e2405005, 2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-38992998

RÉSUMÉ

To boost the stability of all-small-molecule (ASM) organic photovoltaic (OPV) blends, an insulator polymer called styrene-ethylene-butylene-styrene (SEBS) as morphology stabilizer is applied into the host system of small molecules BM-ClEH:BO-4Cl. Minor addition of SEBS (1 mg/ml in host solution) provides a significantly enhanced T80 value of 15000 hours (extrapolated), surpassing doping-free (0 mg/ml) and heavy doping (10 mg/ml) counterparts (900 hours, 30 hours). The material reproducibility and cost-effectiveness of the active layer will not be affected by this industrially available polymer, where the power conversion efficiency (PCE) can be well maintained at 15.02%, which is still a decent value for non-halogen solvent-treated ASM OPV. Morphological and photophysical characterizations clearly demonstrate SEBS's pivotal effect on suppressing the degradation of donor molecules and blend film's crystallization/aggregation reorganization, which protects the exciton dynamics effectively. This work pays meaningful attention to the ASM system stability, performs a smart strategy to suppress the film morphology degradation, and releases a comprehensive understanding of the mechanism of device performance reduction.

15.
Mol Plant ; 2024 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-38946140

RÉSUMÉ

Over the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SAR) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize. Maize phyB physically interacts with the LIGULELESS1 (LG1), a classical key regulator of leaf angle, to coordinately regulate plant architecture and density tolerance. The abundance of LG1 is significantly increased by phyB under high R:FR light (low density) but rapidly decreases under low R:FR light (high density), correlating with variations in leaf angle and plant height under various densities. Additionally, we identified the homeobox transcription factor HB53 as a target co-repressed by both phyB and LG1 but rapidly induced by canopy shade, indicating its central role in response to varying densities. Notably, HB53 regulates plant architecture by controlling the elongation and division of ligular adaxial and abaxial cells. These findings uncover the phyB-LG1-HB53 regulatory module as a key molecular mechanism governing plant architecture and density tolerance, providing potential genetic targets for breeding maize hybrid varieties optimized for high-density planting.

16.
J Org Chem ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38950133

RÉSUMÉ

Nickel-catalyzed hydrocyanation of 1,3-butadiene with hydrogen cyanide gas is the predominant method for the synthesis of adiponitrile, which is an important precursor for polymer production. However, the use of fossil-derived alkenes raises environmental concerns, and hydrogen cyanide is highly volatile and extremely toxic. Herein, we report the use of biomass-derived 1,4-butanediol, as well as other primary alcohols, for photochemical synthesis of linear and branched nitriles and dinitriles, including adiponitrile, with 1,4-dicyanobenzene as the CN source. This mild, sustainable method does not require hydrogen cyanide gas or an air- or moisture-sensitive metal catalyst and is applicable for the production of dinitriles as precursors of diamines, which have potential utility for the development of novel polyamides.

17.
Phytother Res ; 2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38972848

RÉSUMÉ

Mild cognitive impairment poses an increasing challenge to middle-aged and elderly populations. Traditional Chinese medicinal herbs like Cistanche tubulosa and Ginkgo biloba (CG) have been proposed as potential agents to improve cognitive and memory functions. A randomized controlled trial involving 100 Chinese middle-aged and elderly participants was conducted to investigate the potential synergistic effects of CG on cognitive function in individuals at risk of neurodegenerative diseases. Over 90 days, both CG group and placebo group received two tablets daily, with each pair of CG tablets containing 72 mg echinacoside and 27 mg flavonol glycosides. Cognitive functions were assessed using multiple scales and blood biomarkers were determined at baseline, Day 45, and Day 90. The CG group exhibited significant improvements in the scores of Mini-Mental State Examination (26.5 at baseline vs. 27.1 at Day 90, p < 0.001), Montreal Cognitive Assessment (23.4 at baseline vs. 25.3 at Day 90, p < 0.001), and World Health Organization Quality of Life (81.6 at baseline vs. 84.2 at Day 90, p < 0.001), all surpassing scores in placebo group. Notably, both the Cognitrax matrix test and the Wechsler Memory Scale-Revised demonstrated enhanced memory functions, including long-term and delayed memory, after CG intervention. Moreover, cognitive-related blood biomarkers, including total tau, pT181, pS199, pT231, pS396, and thyroid-stimulating hormone, significantly decreased, whereas triiodothyronine and free triiodothyronine significantly increased. No treatment-related adverse events were reported, and routine blood and urine tests remained stable. These findings indicated that CG supplementation could potentially serve as an effective supplementary solution for enhancing cognitive and memory functions.

18.
Exp Dermatol ; 33(7): e15128, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38973249

RÉSUMÉ

Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence  were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.


Sujet(s)
Acétone , Extracellular Signal-Regulated MAP Kinases , Prurit , Récepteur histaminergique H4 , Moelle spinale , Animaux , Prurit/induit chimiquement , Prurit/métabolisme , Récepteur histaminergique H4/métabolisme , Souris , Moelle spinale/métabolisme , Extracellular Signal-Regulated MAP Kinases/métabolisme , Mâle , Acétone/pharmacologie , Eau , Oxyde de diéthyle , Modèles animaux de maladie humaine , Phosphorylation , Indoles/pharmacologie , Butadiènes/pharmacologie , Pipérazines/pharmacologie , Nitriles/pharmacologie , Peau/métabolisme , Maladie chronique , Méthylhistamines , Protéines proto-oncogènes c-fos/métabolisme , Souris de lignée C57BL
19.
Medicine (Baltimore) ; 103(27): e38736, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38968497

RÉSUMÉ

The coronavirus disease 2019 (COVID-19) disease caused by the severe acute respiratory syndrome coronavirus 2 has had a widespread global impact. In addition to the main respiratory symptoms, research has found significant effects of this virus on the cardiovascular system. This article comprehensively explores the phenomenon of "long-term COVID-19" or postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection, wherein some recovered patients continue to experience long-term health issues after the resolution of acute illness. We delve into the potential reasons behind these symptoms, including increased risk of heart disease, myocardial injury, abnormal inflammatory responses, thrombosis formation, and immune system dysfunction, among others. Furthermore, this paper highlights the potential association between long-term COVID-19 and HF (heart failure), and proposes corresponding preventive strategies. To address this, we advocate for a collaborative approach involving interdisciplinary teams for treatment and management.


Sujet(s)
COVID-19 , Défaillance cardiaque , SARS-CoV-2 , Humains , Défaillance cardiaque/étiologie , COVID-19/complications , COVID-19/prévention et contrôle , Syndrome de post-COVID-19
20.
Article de Anglais | MEDLINE | ID: mdl-38990420

RÉSUMÉ

PURPOSE: The debate between off-pump coronary artery bypass grafting (OPCAB) and on-pump coronary artery bypass grafting (ONCAB) in diabetic patients remains. This meta-analysis aimed to investigate outcomes after OPCAB versus ONCAB for patients with diabetes. METHODS: Literature research was conducted up to December 2023 using Ovid Medline, EMBASE, and the Cochrane Library. Eligible studies were observational studies with a propensity-score analysis of OPCAB versus ONCAB. The primary outcomes were early mortality and mid-term survival. The secondary outcomes were cerebrovascular accidents, reoperation for bleeding, incomplete revascularization, myocardial infarction, low cardiac output, and renal replacement therapy. RESULTS: Our research identified seven observational studies with a propensity-score analysis enrolling 13,085 patients. There was no significant difference between OPCAB and ONCAB for early mortality, mid-term survival, myocardial infarction, low cardiac output, and renal replacement therapy. OPCAB was associated with a lower risk of cerebrovascular accidents (OR 0.43; 95% CI, 0.24-0.76, P = 0.004) and reoperation for bleeding (OR 0.60; 95% CI, 0.41-0.88, P = 0.009). However, OPCAB was associated with a higher risk of incomplete revascularization (OR 2.07; 95% CI, 1.60-2.68, P < 0.00001). CONCLUSION: Among patients with diabetes, no difference in early mortality and mid-term survival was observed. However, OPCAB was associated with a lower incidence of morbidity, including cerebrovascular accidents and reoperation for bleeding.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...