Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 730
Filtrer
1.
BMC Pregnancy Childbirth ; 24(1): 456, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38951757

RÉSUMÉ

BACKGROUND: TBX6, a member of the T-box gene family, encodes the transcription factor box 6 that is critical for somite segmentation in vertebrates. It is known that the compound heterozygosity of disruptive variants in trans with a common hypomorphic risk haplotype (T-C-A) in the TBX6 gene contribute to 10% of congenital scoliosis (CS) cases. The deletion of chromosome 17q12 is a rare cytogenetic abnormality, which often leads to renal cysts and diabetes mellitus. However, the affected individuals often exhibit clinical heterogeneity and incomplete penetrance. METHODS: We here present a Chinese fetus who was shown to have CS by ultrasound examination at 17 weeks of gestation. Trio whole-exome sequencing (WES) was performed to investigate the underlying genetic defects of the fetus. In vitro functional experiments, including western-blotting and luciferase transactivation assay, were performed to determine the pathogenicity of the novel variant of TBX6. RESULTS: WES revealed the fetus harbored a compound heterozygous variant of c.338_340del (p.Ile113del) and the common hypomorphic risk haplotype of the TBX6 gene. In vitro functional study showed the p.Ile113del variant had no impact on TBX6 expression, but almost led to complete loss of its transcriptional activity. In addition, we identified a 1.85 Mb deletion on 17q12 region in the fetus and the mother. Though there is currently no clinical phenotype associated with this copy number variation in the fetus, it can explain multiple renal cysts in the pregnant woman. CONCLUSIONS: This study is the first to report a Chinese fetus with a single amino acid deletion variant and a T-C-A haplotype of TBX6. The clinical heterogeneity of 17q12 microdeletion poses significant challenges for prenatal genetic counseling. Our results once again suggest the complexity of prenatal genetic diagnosis.


Sujet(s)
Chromosomes humains de la paire 17 , Haplotypes , Hétérozygote , Protéines à domaine boîte-T , Humains , Protéines à domaine boîte-T/génétique , Femelle , Chromosomes humains de la paire 17/génétique , Grossesse , Adulte , Délétion de segment de chromosome , , Délétion de séquence , Foetus/malformations , Échographie prénatale
2.
Phytochemistry ; : 114220, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38997099

RÉSUMÉ

Fourteen undescribed nitrogenous merosesquiterpenoids, purpurols A-D (1-4) and puraminones A-J (5-14), along with three known related compounds (15-17) were isolated from the sponge Pseudoceratina purpurea collected in the South China Sea. Their structures and absolute configurations were unambiguously elucidated by a combination of spectroscopic data, X-ray diffraction analysis, electronic circular dichroism calculations, and chemical derivatization. Purpurols A-D (1-4) incorporated nitrogenous heterocycles, compounds 1 and 2 feature an unusual benzothiazole ring, while 3 and 4 feature benzoxazole ring. Puraminones A-J (5-14) represent sesquiterpenoid aminoquinones with different amine and amino acid side chains at C-20. Additionally, twenty unreported sesquiterpenoid aminoquinone analogues were obtained through chemical derivatization. It is worth noting that all compounds are featured with unusual rearranged 4,9-friedodrimane subunit. In the bioassays, purpurols A and B showed weak anti-inflammation in zebrafish, as well as some compounds showed activities against tumor cells, therefore, preliminary structure-cytotoxicity relationships are also discussed.

3.
Langmuir ; 40(26): 13648-13656, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38952282

RÉSUMÉ

Controlling the spontaneous directional transport of droplets plays an important role in the application of microchemical reactions and microdroplet detection. Although the relevant technologies have been widely studied, the existing spontaneous droplet transport strategies still face problems of complex structure, single function, and poor flexibility. Inspired by the spontaneous droplet transport strategy in nature, an asymmetric wettability surface with microcone channels (AWS-MC) is prepared on a flexible fabric by combining surface modification and femtosecond laser manufacturing technology. On this surface, the capillary force and Laplace pressure induced by the wettability gradient and the geometric structure gradient drive the droplet transport from the hydrophobic surface to the hydrophilic surface. Notably, droplets in adjacent hydrophilic regions do not exchange substances even if the gap in the hydrophilic region is only 1 mm, which provides an ideal platform for numerous detections by a single drop. The droplet transport strategy does not require external energy and can adapt to the manipulation of various droplet types. Application of this surface in the blood of organisms is demonstrated. This work provides an effective method for microdroplet-directed self-transport and microdroplet detection.


Sujet(s)
Mouillabilité , Interactions hydrophobes et hydrophiles , Techniques d'analyse microfluidique/instrumentation , Techniques d'analyse microfluidique/méthodes , Animaux , Propriétés de surface
4.
Nanomaterials (Basel) ; 14(13)2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38998765

RÉSUMÉ

Dynamic optical structural color is always desired in various display applications and usually involves active materials. Full-color generation, especially bi-directional full-color generation in both reflective and transmissive modes, without any active materials included, has rarely been investigated. Herein, we demonstrate a scheme of bi-directional full-color generation based on a plasmonic metasurface modulated by the rotation of the polarization angle of the incident light without varying the geometry and the optical properties of the materials and the environment where the metasurface resides. The metasurface unit cell consists of plasmonic modules aligning in three directions and is patterned in a square array. The metasurface structural color device is numerically confirmed to generate full colors in both reflection and transmission. Based on the proposed polarization-dependent structural color, the information encoding process is demonstrated for three multiplexed animal images and quick-responsive (QR) codes to verify the efficient information encoding and decoding of the proposed scheme. In the simulation, the animals can be seen under different polarization incidences, and the QR codes can be successfully decoded by the polarization rotation in transmission. The proposed bi-directional full-color generation metasurface has great potential in applications such as kaleidoscope generation, anti-counterfeiting, dynamic color display, and optical information encoding.

5.
Cancer Lett ; : 217067, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38942137

RÉSUMÉ

Aberrant expression of G protein-coupled receptor class C group 5 member A (GPRC5A) has been reported in multiple cancers and is closely related to patient prognosis. However, the mechanistic role of GPRC5A in gallbladder cancer (GBC) remains unclear. Here, we determined tumor expression levels of GPRC5A and the molecular mechanisms by which GPRC5A regulates gallbladder cancer metastasis. We found that GPRC5A was significantly upregulated in GBC, correlating with poorer patient survival. Knocking down GPRC5A inhibited GBC cell metastasis both in vitro and in vivo. GRPRC5A knockdown resulted in downregulation of TNS4 expression through the JAK2-STAT3 axis. Clinically, GPRC5A expression positively correlated with TNS4. Finally, STAT3 bound to TNS4's promoter region, inducing its expression. Overall, GPRC5A showed high expression in GBC tissues, associated with poor patient prognosis. Our findings first demonstrate that the GPRC5A-JAK2-STAT3-TNS4 pathway promotes GBC cell metastasis, suggesting potential therapy targets.

6.
Opt Express ; 32(10): 17560-17570, 2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38858937

RÉSUMÉ

In previous edge detection schemes based on the spin-orbit interaction of light, the direction and intensity of the edge-enhanced images are influenced by the incident polarization state. In this study, we develop an edge detection strategy that is insensitive to changes in both the incident polarization and the incident angle. The output intensity and transfer function remain entirely impervious to changes in incident polarization, being explicitly formulated as functions of the incident angle, specifically in terms of cot 2⁡θ i and cot⁡θ i , respectively. This behavior is attributed to the opposing nature of the polarization components E~r H-H and E~r V-V in the x-direction after undergoing mapping through the Glan polarizer, while the sum of polarization components E~r H-V and E~r V-H in the y-direction can be simplified to terms independent of incident polarization. Furthermore, we propose a metasurface design to achieve the required optical properties in order to realize the derived edge detection scheme.

7.
Org Lett ; 26(27): 5794-5798, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38935544

RÉSUMÉ

Pyrrole alkaloids (PAs) are a diverse class of natural products with complex carbon frameworks and broad bioactivities that are usually derived from marine sponges. Stylissa massa and Pseudospongosorites suberitoides are two independent sponges collected from the South China Sea in 2013 and 2018, respectively. We discovered PAs are common constituents in both two sponges; more specifically, S. massa produces pyrrole-imidazole alkaloids, and P. suberitoides contains pyrrolidone alkaloids. In this study, three pyrrole steroid metabolites were obtained. Compounds 1 and 2 are a pair of epimers sharing a new 5/7/5/6/6 pentacyclic structural configuration, and compound 3 has a new rigid 5/6/6 tricyclic structure. Interestingly, their scaffolds all possess a 6/6 bicyclic system on the featured classic pyrrole/pyrrolidone skeletons, so-dubbed tagpyrrollins A and B (1 and 2, respectively) and tagpyrrollidone A (3). From a biosynthetic viewpoint, 4,5-dihydroxypent-2-enal probably plays a crucial role in constructing these pyrrole steroid analogues. Based on our previous study on the inhibitory activity of spongiacidin targeting AKR1B1, a drug target for the treatment of chronic diabetic complications, in this study we found that tagpyrrolin A (1) also exhibits an inhibitory effect against AKR1B1.


Sujet(s)
Porifera , Pyrroles , Pyrroles/composition chimique , Pyrroles/pharmacologie , Porifera/composition chimique , Animaux , Structure moléculaire , Stéroïdes/composition chimique , Stéroïdes/pharmacologie , Humains , Alcaloïdes/composition chimique , Alcaloïdes/pharmacologie , Relation structure-activité
8.
J Environ Manage ; 365: 121534, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38905797

RÉSUMÉ

Species and functional diversity play a major role in the stability and sustainability of grassland ecosystems. However, changes in species and functional diversity during grassland degradation in arid areas as well as the underlying mechanisms remain unclear. In this study, we surveyed the vegetation and soil properties of arid regions across a degradation gradient to explore the shifts in species and functional diversity in plant communities, their relationships and key determinants during desert steppe degradation. Our results found significant variability in species diversity and functional diversity across degradation stages. Species diversity (Shannon-Wiener index (H), and Pielou index) and functional diversity (functional evenness (FEve) index, and Rao's quadratic entropy (RaoQ) index) tended to increase initially and then decrease with increasing grassland degradation. The Patrick index, Simpson index, functional richness (FRic) index, functional divergence (FDiv) index, and functional dispersion (FDis) index declined as grassland degradation increased. The relationships between species diversity and functional diversity indices at different stages of degradation in the desert steppe were inconsistent. From no to heavy degradation grasslands, the correlation between species diversity and functional diversity gradually weakened. Specifically, there was a significant correlation between Patrick (R) and FRic indices (R2 > 0.7) on both non-degraded and light degraded grasslands, but there was no significant correlation between R and FRic indices in moderately and heavily degraded grasslands (R2 < 0.7), and R2 gradually decreased. Redundancy analysis and partial least squares path modeling showed that grassland degradation has a significant direct effect on the species diversity and functional diversity. In addition grassland degradation has direct and indirect effects on the species diversity through soil available nitrogen, organic matter and total nitrogen. Functional diversity is directly or indirectly affected by species diversity, soil available nitrogen, organic matter and total nitrogen, soil moisture content, soil bulk density, and pH value. In summary, the relationship between species and functional diversity indices gradually weakened from areas with no degradation to heavy degradation in arid desert grasslands. Our study reveals the patterns and relationships between species diversity and functional diversity throughout the process of grassland degradation, demonstrating a gradual decrease in ecosystem stability and sustainability as degradation advances. Our results have significant implications for the restoration of grassland degradation and the management of ecosystem services in arid steppe regions.


Sujet(s)
Biodiversité , Prairie , Chine , Écosystème , Sol/composition chimique , Climat désertique , Plantes
9.
Mater Horiz ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38932603

RÉSUMÉ

The solar anti-icing/deicing (SADI) strategy represents an environmentally friendly approach for removing ice efficiently. However, the extensive use of photothermal materials could negatively impact financial performance. Therefore, enhancing light utilization efficiency, especially by optimizing the design of a structure with a low content of photothermal materials, has rapidly become a focal point of research. Drawing inspiration from the antireflective micro-nano structure of compound eyes and the thermal insulating hollow structure of polar bear hair, we proposed a new strategy to design a bionic micro-nano hollow film (MNHF). The MNHF was created using a composite manufacturing process that combines femtosecond laser ablation with template transfer techniques. Both theoretical simulations and empirical tests have confirmed that this structure significantly improves photothermal conversion efficiency and thermal radiation capability. Compared to plane film, the photothermal conversion efficiency of MNHF is increased by 45.85%. Under 1.5 sun, the equilibrium temperature of MNHF can reach 73.8 °C. Moreover, even after 10 icing-deicing cycles, MNHF maintains an ultra-low ice adhesion strength of 1.8 ± 0.3 kPa. Additionally, the exceptional mechanical stability, chemical resistance, and self-cleaning capabilities of the MNHF make its practical application feasible. This innovative structure paves the way for designing cost-effective and robust surfaces for efficient photothermal anti-icing/deicing on airplane wings.

10.
Front Plant Sci ; 15: 1372385, 2024.
Article de Anglais | MEDLINE | ID: mdl-38872879

RÉSUMÉ

The judicious management of water and nitrogen (N) is pivotal for augmenting crop productivity and N use efficiency, while also mitigating environmental concerns. With the advent of the High-Farmland Construction Program in China, one-off irrigation has become feasible for most dryland fields, presenting a novel opportunity to explore the synergistic strategies of water and N management. This study delves into the impact of one-off alternate furrow irrigation (AFI) and topdressing N fertilizer (TN) on soil nitrate-N distribution, and N productivity-including plant N accumulation, translocation, and allocation, and grain yield, protein content, N use efficiency of winter wheat (Triticum aestivum L.) in 2018-2019 and 2019-2020. Experimental treatments administered at the jointing stage comprised of two irrigation methods-every (EFI) and alternative (AFI) furrow irrigation at 75 mm, and two topdressing N rates-0 (NTN) and 60 (TN) kg N ha-1. Additionally, a conventional local farmer practice featuring no irrigation and no topdressing N (NINTN) was served as control. Compared to NINTN, EFINTN substantially increased aboveground N accumulation, grain yield, and protein yield, albeit with a reduction in grain protein content by 8.1%-10.6%. AFI, in turn, led to higher nitrate-N accumulation in the 60-160 cm soil depth at booting and anthesis, but diminished levels at maturity, resulting in a significant surge in N accumulation from anthesis to maturity and its contribution to grain, N fertilizer partial factor productivity (PFPN), and N uptake efficiency (NUPE), thereby promoting grain yield by 9.9% and preserving grain protein content. Likewise, TN enhanced soil nitrate-N at key growth stages, reflected in marked improvements in N accumulation both from booting to anthesis and from anthesis to maturity, as well as in grain yield, protein content, and protein yield. The combination of AFI and TN (AFITN) yielded the highest grain yield, protein content, with PFPN, NUPE, and N internal efficiency outstripping those of EFINTN, but not AFINTN. In essence, one-off AFI coupled with TN at the jointing stage is a promising strategy for optimizing soil nitrate-N and enhancing wheat N productivity in dryland where one-off irrigation is assured.

11.
Microb Ecol ; 87(1): 68, 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38722447

RÉSUMÉ

It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, it is speculated that they can also record the lake's critical transition. We studied Lake Dali-Nor in the arid region of Inner Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial communities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strongest antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.


Sujet(s)
Bactéries , ADN bactérien , Sédiments géologiques , Lacs , Lacs/microbiologie , Lacs/composition chimique , Sédiments géologiques/microbiologie , Bactéries/génétique , Bactéries/classification , Bactéries/isolement et purification , Chine , ADN bactérien/génétique , Écosystème , ARN ribosomique 16S/génétique , Microbiote
12.
Lab Chip ; 24(11): 2999-3014, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38742451

RÉSUMÉ

The rapid emergence of anisotropic collagen fibers in the tissue microenvironment is a critical transition point in late-stage breast cancer. Specifically, the fiber orientation facilitates the likelihood of high-speed tumor cell invasion and metastasis, which pose lethal threats to patients. Thus, based on this transition point, one key issue is how to determine and evaluate efficient combination chemotherapy treatments in late-stage cancer. In this study, we designed a collagen microarray chip containing 241 high-throughput microchambers with embedded metastatic breast cancer cell MDA-MB-231-RFP. By utilizing collagen's unique structure and hydromechanical properties, the chip constructed three-dimensional isotropic and anisotropic collagen fiber structures to emulate the tumor cell microenvironment at early and late stages. We injected different chemotherapeutic drugs into its four channels and obtained composite biochemical concentration profiles. Our results demonstrate that anisotropic collagen fibers promote cell proliferation and migration more than isotropic collagen fibers, suggesting that the geometric arrangement of fibers plays an important role in regulating cell behavior. Moreover, the presence of anisotropic collagen fibers may be a potential factor leading to the poor efficacy of combined chemotherapy in late-stage breast cancer. We investigated the efficacy of various chemotherapy drugs using cell proliferation inhibitors paclitaxel and gemcitabine and tumor cell migration inhibitors 7rh and PP2. To ensure the validity of our findings, we followed a systematic approach that involved testing the inhibitory effects of these drugs. According to our results, the drug combinations' effectiveness could be ordered as follows: paclitaxel + gemcitabine > gemcitabine + 7rh > PP2 + paclitaxel > 7rh + PP2. This study shows that the biomimetic chip system not only facilitates the creation of a realistic in vitro model for examining the cell migration mechanism in late-stage breast cancer but also has the potential to function as an effective tool for future chemotherapy assessment and personalized medicine.


Sujet(s)
Mouvement cellulaire , Prolifération cellulaire , Collagène , Microenvironnement tumoral , Humains , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Collagène/composition chimique , Collagène/métabolisme , Mouvement cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/anatomopathologie , Tumeurs du sein/métabolisme , Anisotropie , Femelle , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique
13.
Phytochemistry ; 223: 114109, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38697239

RÉSUMÉ

A previously undescribed open-loop decarbonizing cembranolide, sarcocinerenolide A, and eight undescribed cembranolides, sarcocinerenolides B-I, characterized by poly-membered oxygen ring fragments were isolated from the soft coral Sarcophyton cinereum collected from the South China Sea. The structures and absolute configurations of these previously undescribed compounds were precisely determined by analysis of NMR data, DP4+ and ECD spectra. The bioactivities of the compounds were evaluated using zebrafish models and sarcocinerenolides C and H exhibited anti-thrombotic activity.


Sujet(s)
Anthozoa , Diterpènes , Animaux , Anthozoa/composition chimique , Diterpènes/composition chimique , Diterpènes/pharmacologie , Diterpènes/isolement et purification , Structure moléculaire , Danio zébré , Fibrinolytiques/pharmacologie , Fibrinolytiques/composition chimique , Fibrinolytiques/isolement et purification , Chine , Relation structure-activité
14.
Int J Biol Macromol ; 269(Pt 2): 132263, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38734332

RÉSUMÉ

Two low-molecular-weight polysaccharides (DPSP50 and DPSP70) were obtained using hydrogen peroxide-vitamin C (H2O2-Vc) treatment at 50 °C and 70 °C, respectively. Both DPSP50 and DPSP70 comprised the same six monosaccharides in different ratios, and their molecular weights (Mws) were 640 kDa and 346 kDa, respectively. Functional properties analyses demonstrated that DPSP50 and DPSP70 each had an excellent water holding capacity, oil absorption capacity, and emulsion properties, as well as shear-thinning characteristics and viscoelastic properties. Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopic assays confirmed the existence of α-, ß-pyranose rings and the same six sugar residues in DPSP50 and DPSP70. The results of Congo red test, scanning electron microscopy (SEM), and X-ray diffraction (XRD) demonstrated that DPSP50 and DPSP70 did not contain triple-helix conformations, but were amorphous aggregates with flake-like shape and rough surface. Additionally, both DPSP50 and DPSP70 showed strong anti-complementary activities through the classical pathway and the alternative pathway. The results support the potential utility of these degraded polysaccharides from strawberry fruits in functional foods and medicines.


Sujet(s)
Fragaria , Fruit , Polyosides , Fragaria/composition chimique , Polyosides/composition chimique , Polyosides/pharmacologie , Fruit/composition chimique , Masse moléculaire , Oses/analyse , Oses/composition chimique , Antioxydants/composition chimique , Antioxydants/pharmacologie , Spectroscopie infrarouge à transformée de Fourier , Émulsions/composition chimique , Viscosité , Eau/composition chimique , Acide ascorbique/composition chimique , Acide ascorbique/pharmacologie
15.
Front Plant Sci ; 15: 1284861, 2024.
Article de Anglais | MEDLINE | ID: mdl-38726297

RÉSUMÉ

Lodging is a crucial factor that limits wheat yield and quality in wheat breeding. Therefore, accurate and timely determination of winter wheat lodging grading is of great practical importance for agricultural insurance companies to assess agricultural losses and good seed selection. However, using artificial fields to investigate the inclination angle and lodging area of winter wheat lodging in actual production is time-consuming, laborious, subjective, and unreliable in measuring results. This study addresses these issues by designing a classification-semantic segmentation multitasking neural network model MLP_U-Net, which can accurately estimate the inclination angle and lodging area of winter wheat lodging. This model can also comprehensively, qualitatively, and quantitatively evaluate the grading of winter wheat lodging. The model is based on U-Net architecture and improves the shift MLP module structure to achieve network refinement and segmentation for complex tasks. The model utilizes a common encoder to enhance its robustness, improve classification accuracy, and strengthen the segmentation network, considering the correlation between lodging degree and lodging area parameters. This study used 82 winter wheat varieties sourced from the regional experiment of national winter wheat in the Huang-Huai-Hai southern area of the water land group at the Henan Modern Agriculture Research and Development Base. The base is located in Xinxiang City, Henan Province. Winter wheat lodging images were collected using the unmanned aerial vehicle (UAV) remote sensing platform. Based on these images, winter wheat lodging datasets were created using different time sequences and different UAV flight heights. These datasets aid in segmenting and classifying winter wheat lodging degrees and areas. The results show that MLP_U-Net has demonstrated superior detection performance in a small sample dataset. The accuracies of winter wheat lodging degree and lodging area grading were 96.1% and 92.2%, respectively, when the UAV flight height was 30 m. For a UAV flight height of 50 m, the accuracies of winter wheat lodging degree and lodging area grading were 84.1% and 84.7%, respectively. These findings indicate that MLP_U-Net is highly robust and efficient in accurately completing the winter wheat lodging-grading task. This valuable insight provides technical references for UAV remote sensing of winter wheat disaster severity and the assessment of losses.

16.
Biosensors (Basel) ; 14(5)2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38785726

RÉSUMÉ

Phosphodiesterases (PDEs), a superfamily of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are recognized as a therapeutic target for various diseases. However, the current screening methods for PDE inhibitors usually experience problems due to complex operations and/or high costs, which are not conducive to drug development in respect of this target. In this study, a new method for screening PDE inhibitors based on GloSensor technology was successfully established and applied, resulting in the discovery of several novel compounds of different structural types with PDE inhibitory activity. Compared with traditional screening methods, this method is low-cost, capable of dynamically detecting changes in substrate concentration in live cells, and can be used to preliminarily determine the type of PDEs affected by the detected active compounds, making it more suitable for high-throughput screening for PDE inhibitors.


Sujet(s)
Inhibiteurs de la phosphodiestérase , Inhibiteurs de la phosphodiestérase/pharmacologie , Humains , AMP cyclique/métabolisme , Phosphodiesterases/métabolisme , Tests de criblage à haut débit , Techniques de biocapteur , GMP cyclique/métabolisme , Évaluation préclinique de médicament
17.
ACS Appl Mater Interfaces ; 16(22): 29477-29487, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38773964

RÉSUMÉ

InGaN nanorods possessing larger and wavelength selective absorption by regulating In component based visible light photodetectors (PDs) as one of the key components in the field of visible light communication have received widespread attention. Currently, the weak photoelectric conversion efficiency and slow photoresponse speed of InGaN nanorod (NR) based PDs due to high surface states of InGaN NRs impede the actualization of high-responsivity and high-speed blue light PDs. Here, we have demonstrated high-performance InGaN NR/PEDOT:PSS@Ag nanowire (NW) heterojunction blue light photodetectors utilizing surface passivation and a localized surface plasmon resonance effect. The dark current is significantly reduced by passivating the InGaN NR surface states using PEDOT:PSS. The photoelectric conversion efficiency is significantly increased by increasing light absorption due to the electromagnetic field oscillation of Ag NWs. The responsivity, external quantum efficiency, detectivity, and fall/off time of the InGaN NR/PEDOT:PSS@Ag NW PDs are up to 2.9 A/W, 856%, 6.64 × 1010 Jones, and 439/725 µs, respectively, under 1 V bias and 420 nm illumination. The proposed device design presents a novel approach toward the development of low-cost, high-responsivity, high-speed blue light photodetectors for applications involving visible light communication.

18.
Chem Biodivers ; : e202400939, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38752887

RÉSUMÉ

Four new γ-lactam alkaloids, suberitolactams A-D (1-4), two new pyridine alkaloids, suberitopyridines A-B (7-8), and two known compounds (5-6) were isolated from the South China Sea sponge Pseudospongosorites suberitoides. The structures were elucidated by detailed 1D and 2D NMR experiments along with HRESIMS analysis and single crystal X-ray diffraction. Compounds 1 and 8 showed moderate to weak antiviral activity against H1 N1 virus with IC50 values of 27.6 and 13.3 µM, respectively.

19.
Fitoterapia ; 177: 106043, 2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38801893

RÉSUMÉ

Three undescribed phenols, mandshusica C-E (1-3) and a new lignan, mandshusica F (5), along with six known compounds (4, 6-10) were isolated from the roots and rhizomes of Clematis terniflora var. manshurica (Rupr.) Ohwi. Their structures were elucidated by extensive spectroscopic analysis as well as NMR and ECD calculations. Moreover, the possible biosynthetic pathways of compounds 1-3 were also discussed. All compounds were evaluated for their anti-inflammatory activities in LPS-induced RAW 264.7 cells. Compounds 1, 3, 4 significantly reduced the levels of NO and TNF-α, while compounds 2 and 8 significantly inhibited NO production in LPS-induced RAW264.7 cells.

20.
Small ; : e2400458, 2024 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-38607289

RÉSUMÉ

1D nanowire networks, sharing similarities of structure, information transfer, and computation with biological neural networks, have emerged as a promising platform for neuromorphic systems. Based on brain-like structures of 1D nanowire networks, neuromorphic synaptic devices can overcome the von Neumann bottleneck, achieving intelligent high-efficient sensing and computing function with high information processing rates and low power consumption. Here, high-temperature neuromorphic synaptic devices based on SiC@NiO core-shell nanowire networks optoelectronic memristors (NNOMs) are developed. Experimental results demonstrate that NNOMs attain synaptic short/long-term plasticity and modulation plasticity under both electrical and optical stimulation, and exhibit advanced functions such as short/long-term memory and "learning-forgetting-relearning" under optical stimulation at both room temperature and 200 °C. Based on the advanced functions under light stimulus, the constructed 5 × 3 optoelectronic synaptic array devices exhibit a stable visual memory function up to 200 °C, which can be utilized to develop artificial visual systems. Additionally, when exposed to multiple electronic or optical stimuli, the NNOMs effectively replicate the principles of Pavlovian classical conditioning, achieving visual heterologous synaptic functionality and refining neural networks. Overall, with abundant synaptic characteristics and high-temperature thermal stability, these neuromorphic synaptic devices offer a promising route for advancing neuromorphic computing and visual systems.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...