Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Mol Phylogenet Evol ; 148: 106807, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32268200

RÉSUMÉ

Snakes are one of the most diverse groups of terrestrial vertebrates, with approximately 3500 extant species. A robust phylogeny and taxonomy of snakes is crucial for us to know, study and protect them. For a large group such as snakes, broad-scale phylogenetic reconstructions largely rely on data integration. Increasing the compatibility of the data from different researches is thus important, which can be facilitated by standardization of the loci used in systematic analyses. In this study, we proposed a unified multilocus marker system for snake systematics by conflating 5 mitochondrial markers, 19 vertebrate-universal nuclear protein coding (NPC) markers and 72 snake-specific noncoding intron markers. This marker system is an addition to the large squamate conserved locus set (SqCL) for studies preferring a medium-scale data set. We applied this marker system to over 440 snake samples and constructed the currently most comprehensive systematic framework of the snakes in China. Robust snake phylogenetic relationships were recovered at both deep and shallow evolutionary depths, demonstrating the usefulness of this multilocus marker system. Discordance was revealed by a parallel comparison between the snake tree based on the multilocus marker system and that based on only the mitochondrial loci, highlighting the necessity of using multiple types of markers to better understand the snake evolutionary histories. The divergence times of different snake groups were estimated with the nuclear data set. Our comprehensive snake tree not only confirms many important nodes inferred in previous studies but also contributes new insights into many snake phylogenetic relationships. Suggestions are made for the current Chinese snake taxonomy.


Sujet(s)
Locus génétiques , Serpents/classification , Serpents/génétique , Animaux , Évolution biologique , Noyau de la cellule/génétique , Chine , Marqueurs génétiques , Mitochondries/génétique , Phylogenèse , Facteurs temps
3.
Ecol Evol ; 7(23): 10042-10055, 2017 12.
Article de Anglais | MEDLINE | ID: mdl-29238535

RÉSUMÉ

Relative to the commonly used mitochondrial and nuclear protein-coding genes, the noncoding intron sequences are a promising source of informative markers that have the potential to resolve difficult phylogenetic nodes such as rapid radiations and recent divergences. Yet many issues exist in the use of intron markers, which prevent their extensive application as conventional markers. We used the diverse group of snakes as an example to try paving the way for massive identification and application of intron markers. We performed a series of bioinformatics screenings which identified appropriate introns between single-copy and conserved exons from two snake genomes, adding particular constraints on sequence length variability and sequence variability. A total of 1,273 candidate intron loci were retrieved. Primers for nested polymerase chain reaction (PCR) were designed for over a hundred candidates and tested in 16 snake representatives. 96 intron markers were developed that could be amplified across a broad range of snake taxa with high PCR successful rates. The markers were then applied to 49 snake samples. The large number of amplicons was subjected to next-generation sequencing (NGS). An analytic strategy was developed to accurately recover the amplicon sequences, and approximately, 76% of the marker sequences were recovered. The average p-distances of the intron markers at interfamily, intergenus, interspecies, and intraspecies levels were .168, .052, .015, and .004, respectively, suggesting that they were useful to study snake relationships of different evolutionary depths. A snake phylogeny was constructed with the intron markers, which produced concordant results with robust support at both interfamily and intragenus levels. The intron markers provide a convenient way to explore the signals in the noncoding regions to address the controversies on the snake tree. Our improved strategy of genome screening is effective and can be applied to other animal groups. NGS coupled with appropriate sequence processing can greatly facilitate the extensive application of molecular markers.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...