Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 61
Filtrer
1.
Inorg Chem ; 63(40): 18717-18726, 2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-39302701

RÉSUMÉ

The significant temperature response of lanthanide-doped up-conversion luminescent materials is typically characterized by a severe thermal quenching of the luminescence intensity at elevated ambient temperatures, which severely restricts materials' capability in temperature sensing. Herein, the influence of matrix phonon properties on the remarkable thermal enhancement effect in the thermosensitive material NaLaMgWO6:Yb3+/Nd3+ is reported. It is elucidated that achieving a significant thermal enhancement of Nd3+ with a higher phonon energy oxide matrix is easier than a halide matrix, which has lower phonon energy by comparison with previous findings. Interestingly, the emission of thermally related levels gets enhanced to various extents through phonon-assisted thermal population. In light of this, a three-model thermometer is constructed based on luminescence intensity ratio (LIR) technology. Given that Sr and ΔE possess a positive correlation, it is feasible to acquire greater temperature monitoring sensitivity Sr in Nd3+, which has a larger ΔE. At 313 K, this thermometry model may achieve a maximum sensitivity of 2.84%·K-1. This work not only provides guidance for the selection of efficient near-infrared up-conversion material but also opens up a prospect for the realization of ultrasensitive thermally coupled luminescent thermometers.

2.
Insect Mol Biol ; 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39150688

RÉSUMÉ

It is a common strategy for viruses to block the host cell cycle to favour their DNA replication. Baculovirus, being a double-stranded DNA virus, can arrest the cell cycle in the G2/M phase to facilitate its replication. However, the key viral genes and mechanisms crucial for inducing cell cycle arrest remain poorly understood. Here, we initially examined the impacts of several Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication-associated genes: ie1, lef-1, lef-2, lef-3, lef-4, odv-ec27 and dbp. We assessed their effects on both the host cells' DNA replication and cell cycle. Our findings reveal that when the lef-2 gene was overexpressed, it led to a significant increase in the number of cells in the G2/M phase and a reduction in the number of cells in the S phase. Furthermore, we discovered that the LEF-2 protein is located in the virogenic stroma and confirmed its involvement in viral DNA replication. Additionally, by employing interference and overexpression experiments, we found that LEF-2 influences host cell DNA replication and blocks the cell cycle in the G2/M phase by regulating the expression of CyclinB and CDK1. Finally, we found that BmNPV lef-2 triggered a DNA damage response in the host cell, and inhibiting this response removed the cell cycle block caused by BmNPV LEF-2. Thus, our findings indicate that the BmNPV lef-2 gene plays a crucial role in viral DNA replication and can regulate host cell cycle processes. This study furthers our understanding of baculovirus-host cell interactions and provides new insight into the molecular mechanisms of antiviral research.

3.
Inorg Chem ; 63(30): 14142-14151, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-38993045

RÉSUMÉ

Double perovskites, a class of ceramic oxides with unique crystal structures and diverse physical properties, show promise for various technological applications including solar cells, photodetectors, and light-emitting diodes (LEDs). Despite limited research on rare earth-doped double perovskites, leveraging their ultrahigh luminous efficiency to achieve bright yellow LED emission and addressing energy transfer challenges between Yb3+ and Nd3+ ions in double perovskite La2ZnTiO6 with moderate phonon energy are explored in this work. Through phonon-assisted energy transfer, an ultrasensitive optical thermometer covering a wide temperature range is developed by utilizing the different temperature responses of Er3+ emission in the visible light region and Nd3+ emission in the near-infrared region based on the luminescence intensity ratio (LIR). All the results demonstrate that the rare earth (Yb-Er, Yb-Nd, and Yb-Nd-Er)-doped La2ZnTiO6 phosphors can be effectively utilized for ultrabright LED illumination and ultrahigh sensitivity self-calibrated temperature sensing. This research underscores the significance of phonon-assisted energy transfer in improving material properties and provides valuable insights for the advancement of multifunctional materials.

4.
Inorg Chem ; 63(29): 13413-13424, 2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-38961680

RÉSUMÉ

Luminescence nanothermometers have garnered considerable attention due to their noncontact measurement, high spatial resolution, and rapid response. However, many nanothermometers employing single-mode measurement encounter challenges regarding their relative sensitivity. Herein, a unique class of tunable upconversion (UC) and downshifting (DS) luminescence covering the visible to near-infrared range (400-1700 nm) is reported, characterized by the superior Tm3+, Ho3+, and Er3+ emissions induced by efficient energy transfer. The outstanding negative thermal expansion characteristic of ScF3 nanocrystals has been found to guide excitation energy toward the relevant emitting states in the Yb3+-Ho3+-Tm3+-codoped system, consequently resulting in remarkable near-infrared III (NIR-III) luminescence at ∼1625 nm (Tm3+:3F4 → 3H6 transition), which in turn presents numerous opportunities for designing multimode ratiometric luminescence thermometry. Furthermore, by facilitating phonon-assisted energy transfer in Er3+-Ho3+-codoped systems, the luminescence intensity ratio (LIR) of 4I13/2 of Er3+ and 5I6 of Ho3+ in ScF3:Yb3+/Ho3+/Er3+ exhibits a strong temperature dependence, enabling NIR-II/III luminescence thermometry with superior thermal sensitivity and resolution (Sr = 0.78% K-1, δT = 0.64 K). These findings not only underscore the distinctive and ubiquitous attributes of lanthanide ion-doped nanomaterials but also hold significant implications for crafting luminescence thermometers with unparalleled sensitivity.

5.
J Colloid Interface Sci ; 673: 249-257, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-38875790

RÉSUMÉ

Research on the core-shell design of rare earth-doped nanoparticles has recently gained significant attention, particularly in exploring the synergistic effects of combining active and inert shell layers. In this study, we successfully synthesized 8 types of spherical core-shell Na-based nanoparticles to enhance the efficiency of core-shell design in upconversion luminescence and temperature sensing through the strategic arrangement of inert and active layers. The most effective upconversion luminescence was observed under 980 nm and 808 nm laser excitation using NaYF4 inert shell NaYF4:Yb3+, Er3+@ NaYF4 and NaYF4@ NaYF4:Yb3+, Nd3+ core-shell nanostructures. Moreover, the incorporation of the NaYbF4 active shell structure led to a significant increase in relative sensitivity in ratio luminescence thermometry. Notably, the NaYF4:Yb3+, Nd3+, Er3+@ NaYbF4 core-shell structure demonstrated the highest relative sensitivity of 1.12 %K-1. This research underscores the crucial role of inert shell layers in enhancing upconversion luminescence in core-shell structure design, while active layers play a key role in achieving high-sensitivity temperature detection capabilities.

6.
Dev Cell ; 59(18): 2506-2517.e6, 2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-38944040

RÉSUMÉ

We describe a next-generation Drosophila protein interaction map-"DPIM2"-established from affinity purification-mass spectrometry of 5,805 baits, covering the largest fraction of the Drosophila proteome. The network contains 32,668 interactions among 3,644 proteins, organized into 632 clusters representing putative functional modules. Our analysis expands the pool of known protein interactions in Drosophila, provides annotation for poorly studied genes, and postulates previously undescribed protein interaction relationships. The predictive power and functional relevance of this network are probed through the lens of the Notch signaling pathway, and we find that newly identified members of complexes that include known Notch modifiers can also modulate Notch signaling. DPIM2 allows direct comparisons with a recently published human protein interaction network, defining the existence of functional interactions conserved across species. Thus, DPIM2 defines a valuable resource for predicting protein co-complex memberships and functional associations as well as generates functional hypotheses regarding specific protein interactions.


Sujet(s)
Protéines de Drosophila , Cartes d'interactions protéiques , Drosophila melanogaster , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Réseaux de régulation génique , Liaison aux protéines , Transduction du signal , Protéome/génétique , Protéome/métabolisme , Humains
7.
Front Oncol ; 14: 1297156, 2024.
Article de Anglais | MEDLINE | ID: mdl-38380365

RÉSUMÉ

Lung cancer is the leading cause of cancer death, accounting for one-third of all cancer deaths worldwide. The MET (c-MET) gene, as one of the therapeutic target spots of NSCLC, has become increasingly more important. MET amplification/overexpression was divided into primary (intrinsic) and secondary (acquired). Studies indicated that the combination of Osimertinib and Savolitinib was safe and showed promising antitumor effect in NSCLC patients with secondary MET amplification after EGFR mutations. However, NSCLC patients with primary MET amplification/overexpression and EGFR mutations are rare in clinics, and the efficacy of dual-target therapy combined with EGFR-TKI and Savolitinib for them has not been studied yet. Here, we reported two NSCLC patients with primary MET amplification/overexpression and EGFR mutation, who benefited from T+S therapy (the dual-target therapy of EGFR-TKI plus Savolitinib) and achieved a progression-free survival (PFS) of approximately 5 months. The two cases indicated that T+S therapy has an acceptable safety profile and encouraging antitumor efficacy in NSCLC patients harboring concurrent primary MET amplification/overexpression and EGFR mutation. Meanwhile, the observation stresses the importance of genetic testing, and the MET gene needs to be detected at first diagnosis for the best choice of targeted therapies.

8.
J Environ Manage ; 344: 118920, 2023 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-37660639

RÉSUMÉ

The emergence and spread of antibiotic resistance genes (ARGs) in soil due to animal excreta and organic waste is a major threat to human health and ecosystems, and global efforts are required to tackle the issue. However, there is limited knowledge of the variation in ARG prevalence and diversity resulting from different land-use patterns and underlying driving factors in soils. This study aimed to comprehensively characterize the profile of ARGs and mobile genetic elements and their drivers in soil samples collected from 11 provinces across China, representing three different land-use types, using high-throughput quantitative polymerase chain reaction and 16S rRNA amplicon sequencing. Our results showed that agricultural soil had the highest abundance and diversity of ARGs, followed by tea plantation and forest land. A total of 124 unique ARGs were detected in all samples, with shared subtypes among different land-use patterns indicating a common origin or high transmission frequency. Moreover, significant differences in ARG distribution were observed among different geographical regions, with the greatest enrichment of ARGs found in southern China. Biotic and abiotic factors, including soil properties, climatic factors, and bacterial diversity, were identified as the primary drivers associated with ARG abundance, explaining 71.8% of total ARG variation. The findings of our study demonstrate that different land-use patterns are associated with variations in ARG abundance in soil, with agricultural practices posing the greatest risk to human health and ecosystems regarding ARGs. Our identification of biotic and abiotic drivers of ARG abundance provides valuable insights into strategies for mitigating the spread of these genes. This study emphasizes the need for coordinated and integrated approaches to address the global antimicrobial resistance crisis.


Sujet(s)
Écosystème , Sol , Animaux , Humains , Prévalence , ARN ribosomique 16S , Antibactériens , Résistance microbienne aux médicaments/génétique
9.
Aging (Albany NY) ; 15(15): 7689-7708, 2023 08 08.
Article de Anglais | MEDLINE | ID: mdl-37556347

RÉSUMÉ

Neuroinflammation plays an important role in the pathogenesis of neurological disorders, and despite intensive research, treatment of neuroinflammation remains limited. BaiXiangDan capsule (BXD) is widely used in clinical practice. However, systematic studies on the direct role and mechanisms of BXD in neuroinflammation are still lacking. We systematically evaluated the potential pharmacological mechanisms of BXD on neuroinflammation using network pharmacological analysis combined with experimental validation. Multiple databases are used to mine potential targets for bioactive ingredients, drug targets and neuroinflammation. GO and KEGG pathway analysis was also performed. Interactions between active ingredients and pivotal targets were confirmed by molecular docking. An experimental model of neuroinflammation was used to evaluate possible therapeutic mechanisms for BXD. Network pharmacological analysis revealed that Chrysoeriol, Kaempferol and Luteolin in BXD exerted their anti-neuroinflammatory effects mainly by acting on targets such as NCOA2, PIK3CA and PTGS2. Molecular docking results showed that their average affinity was less than -5 kcal/mol, with an average affinity of -8.286 kcal/mol. Pathways in cancer was found to be a potentially important pathway, with involvement of PI3K/AKT signaling pathways. In addition, in vivo experiments showed that BXD treatment ameliorated neural damage and reduced neuronal cell death. Western blotting, RT-qPCR and ELISA analysis showed that BXD inhibited not only the expression of IL-1ß, TNF-α and NO, but also NF-κB, MMP9 and PI3K/AKT signaling pathways. This study applied network pharmacology and in vivo experiments to explore the possible mechanisms of BXD against neuroinflammation, providing insight into the treatment of neuroinflammation.


Sujet(s)
Phosphatidylinositol 3-kinases , Protéines proto-oncogènes c-akt , Capsules , Simulation de docking moléculaire , Technique de Western
10.
Nat Commun ; 14(1): 4050, 2023 07 08.
Article de Anglais | MEDLINE | ID: mdl-37422469

RÉSUMÉ

Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity in health and disease. However, the lack of physical relationships among dissociated cells has limited its applications. To address this issue, we present CeLEry (Cell Location recovEry), a supervised deep learning algorithm that leverages gene expression and spatial location relationships learned from spatial transcriptomics to recover the spatial origins of cells in scRNA-seq. CeLEry has an optional data augmentation procedure via a variational autoencoder, which improves the method's robustness and allows it to overcome noise in scRNA-seq data. We show that CeLEry can infer the spatial origins of cells in scRNA-seq at multiple levels, including 2D location and spatial domain of a cell, while also providing uncertainty estimates for the recovered locations. Our comprehensive benchmarking evaluations on multiple datasets generated from brain and cancer tissues using Visium, MERSCOPE, MERFISH, and Xenium demonstrate that CeLEry can reliably recover the spatial location information for cells using scRNA-seq data.


Sujet(s)
Apium , Transcriptome , Transcriptome/génétique , Apium/génétique , Analyse de l'expression du gène de la cellule unique , Analyse de séquence d'ARN/méthodes , Analyse sur cellule unique/méthodes , Analyse de profil d'expression de gènes/méthodes
11.
Chemosphere ; 336: 139272, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37343633

RÉSUMÉ

Conventional and bio-organic fertilizers play an important role in maintaining soil health and promoting crop growth. However, the effect of organic fertilizers on the prevalence of antibiotic resistance genes (ARGs) in the vegetable cropping system has been largely overlooked. In this study, we investigated the impacts of soil properties and biotic factors on ARG profiles by analyzing ARG and bacterial communities in vegetable copping soils with a long-term history of manure and bio-organic fertilizer application. The ARG abundance in the soil was significantly increased by 116% with manure application compared to synthetic NPK fertilizer application. This finding was corroborated by our meta-analysis that the longer the duration of manure application, the greater the response of increased soil ARG abundance. However, bio-organic fertilizers containing Trichoderma spp. Significantly reduced ARG contamination by 31% compared to manure application. About half of the ARG variation was explained by changes in bacterial abundance and structure, followed by soil properties. The mitigation of ARG by Trichoderma spp. Is achieved by altering the structure of the bacterial community and weakening the close association between bacteria and ARG prevalence. Taken together, these findings shed light on the contribution of bio-organic fertilizers in mitigating ARG contamination in agricultural soils, which can help manage the ecological risk posed by ARG inputs associated with manure application.


Sujet(s)
Antibactériens , Sol , Sol/composition chimique , Antibactériens/pharmacologie , Engrais/analyse , Gènes bactériens , Fumier/microbiologie , Microbiologie du sol , Bactéries/génétique , Résistance microbienne aux médicaments/génétique , Légumes/génétique
12.
BMC Genomics ; 24(1): 228, 2023 May 02.
Article de Anglais | MEDLINE | ID: mdl-37131143

RÉSUMÉ

BACKGROUND: Single-cell RNA sequencing is a state-of-the-art technology to understand gene expression in complex tissues. With the growing amount of data being generated, the standardization and automation of data analysis are critical to generating hypotheses and discovering biological insights. RESULTS: Here, we present scRNASequest, a semi-automated single-cell RNA-seq (scRNA-seq) data analysis workflow which allows (1) preprocessing from raw UMI count data, (2) harmonization by one or multiple methods, (3) reference-dataset-based cell type label transfer and embedding projection, (4) multi-sample, multi-condition single-cell level differential gene expression analysis, and (5) seamless integration with cellxgene VIP for visualization and with CellDepot for data hosting and sharing by generating compatible h5ad files. CONCLUSIONS: We developed scRNASequest, an end-to-end pipeline for single-cell RNA-seq data analysis, visualization, and publishing. The source code under MIT open-source license is provided at https://github.com/interactivereport/scRNASequest . We also prepared a bookdown tutorial for the installation and detailed usage of the pipeline: https://interactivereport.github.io/scRNAsequest/tutorial/docs/ . Users have the option to run it on a local computer with a Linux/Unix system including MacOS, or interact with SGE/Slurm schedulers on high-performance computing (HPC) clusters.


Sujet(s)
Écosystème , Analyse de profil d'expression de gènes , Analyse de profil d'expression de gènes/méthodes , Analyse de l'expression du gène de la cellule unique , Analyse de séquence d'ARN/méthodes , Analyse sur cellule unique/méthodes , Logiciel , Édition
13.
Heliyon ; 9(5): e15955, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37215901

RÉSUMÉ

Oral mucositis causes substantial morbidity during head and neck radiotherapy, especially nasopharyngeal carcinoma. During radiotherapy, patients develop severe oral mucositis, which leads to oral pain and difficulty in eating and interruption of radiotherapy, affects the treatment effect and increase the probability of recurrence. Although we have explored various methods to reduce the mucosal damage caused by radiotherapy, these methods still cannot reduce pain caused by mucositis clinically. Therefore, the use of Dexamethasone-Lidocaine-Vitamin B12 Mouth rinse (DLVBM) proved its role in reducing oral mucosal pain, reducing the weight loss of patients, and completing radiotherapy according to the course of treatment. 133 patients with nasopharyngeal carcinoma who received radiotherapy (a total dose of 70 Gy) in our hospital from January to December 2020-2021 were selected. 67 patients received DLVBM treatment for mucositis reaction, and 66 patients received Compound chlorhexidine mouthwash (CCM) to deal with mucositis. Symptoms related to oral mucosal pain score and body weight, mucosal healing time were analyzed retrospectively. We found that patients with the DLVBM group significantly reduced oral pain and reduced weight loss. However, there was no significant difference about the mucosal healing time between the DLVBM group and CCM group. DLVBM may be moderately more effective in preventing radiation-induced mucositis and mucositis-related pain, and their use may lead to less frequent RT course interruptions from mucositis.

14.
Antioxidants (Basel) ; 12(4)2023 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-37107289

RÉSUMÉ

Polysaccharide decolorization has a major effect on polysaccharide function. In the present study, the decolorization of Rehmannia glutinosa polysaccharides (RGP) is optimized using two methods-the AB-8 macroporous resin (RGP-1) method and the H2O2 (RGP-2) method. The optimal decolorization parameters for the AB-8 macroporous resin method were as follows: temperature, 50 °C; macroporous resin addition, 8.4%; decolorization duration, 64 min; and pH, 5. Under these conditions, the overall score was 65.29 ± 3.4%. The optimal decolorization conditions for the H2O2 method were as follows: temperature, 51 °C; H2O2 addition, 9.5%; decolorization duration, 2 h; and pH, 8.6. Under these conditions, the overall score was 79.29 ± 4.8%. Two pure polysaccharides (RGP-1-A and RGP-2-A) were isolated from RGP-1 and RGP-2. Subsequently, their antioxidant and anti-inflammatory effects and mechanisms were evaluated. RGP treatment activated the Nrf2/Keap1 pathway and significantly increased the activity of antioxidant enzymes (p < 0.05). It also inhibited the expression of pro-inflammatory factors and suppressed the TLR4/NF-κB pathway (p < 0.05). RGP-1-A had a significantly better protective effect than RGP-2-A, likely owing to the sulfate and uronic groups it contains. Together, the findings indicate that RGP can act as a natural agent for the prevention of oxidation and inflammation-related diseases.

15.
Pest Manag Sci ; 79(7): 2287-2298, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-36935349

RÉSUMÉ

The silkworm, which is considered a model invertebrate organism, was the first insect used for silk production in human history and has been utilized extensively throughout its domestication. However, sericulture has been plagued by various pathogens that have  caused significant economic losses. To enhance the resistance of a host to its pathogens,numerous strategies have been developed. For instance, gene-editing techniques have been applied to a wide range of organisms, effectively solving a variety of experimental problems. This review focuses on several common silkworm pests and their pathogenic mechanisms, with a particular emphasis on breeding for disease resistance to control multiple types of silkworm diseases. The review also compares the advantages and disadvantages of transgenic technology and gene-editing systems. Finally, the paper provides a brief summary of current strategies used in breeding silkworm disease resistance, along with a discussion of the establishment of existing technologies and their future application prospects. © 2023 Society of Chemical Industry.


Sujet(s)
Bombyx , Animaux , Humains , Bombyx/génétique , Résistance à la maladie/génétique , Édition de gène
16.
Int J Biol Macromol ; 233: 123482, 2023 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-36736521

RÉSUMÉ

Apoptosis is essential for the normal growth, development, and immunity defense of living organisms, and its function and mechanisms have been intensively studied. When viral infection occurs, apoptosis is triggered, causing programmed death of the infected cells. Meanwhile, viruses have also evolved countermeasures to inhibit apoptosis in host cells. We previously constructed a transgenic silkworm line with significantly improved resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) by knocking out the BmNPV inhibitor of apoptosis 2 (iap2) gene. However, the mechanism of how IAP2 induces apoptosis still needs to be further investigated. Here, the transcriptomes of Cas9(-)/sgiap2 (-) and Cas9(+)/sgiap2(+) strains were analyzed at 48 h after BmNPV infection, and a total of 709 differential genes were obtained. A KEGG analysis revealed that the differentially expressed genes were enriched in the oxidative phosphorylation, proteasome, and ribosome pathways. In the oxidative phosphorylation pathway, 41 differentially expressed genes were downregulated, and 12 of these genes were verified by qRT-PCR. More importantly, the knockout of BmNPV iap2 led to the inhibition of the oxidative phosphorylation pathway, followed by activated oxidative stress triggered apoptosis, thereby inhibiting the replication of BmNPV in vitro and vivo. The results provide a basis for the analysis of the initiation of apoptosis that can inhibit virus proliferation, and the study presents new ideas for the subsequent creation of resistant material.


Sujet(s)
Bombyx , Phosphorylation oxydative , Animaux , Analyse de profil d'expression de gènes , Transcriptome , Apoptose/génétique , Bombyx/métabolisme
17.
J Mol Biol ; 435(14): 168017, 2023 07 15.
Article de Anglais | MEDLINE | ID: mdl-36806691

RÉSUMÉ

We present RNASequest, a customizable RNA sequencing (RNAseq) analysis, app management, and result publishing framework. Its three-in-one RNAseq data analysis ecosystem consists of (1) a reproducible, configurable expression analysis (EA) module, (2) multi-faceted result presentation in R Shiny, a Bookdown document and an online slide deck, and (3) a centralized data management system. In principle, following up our well-received omics data visualization tool Quickomics, RNASequest automates the differential gene expression analysis step, eases statistical model design by built-in covariates testing module, and further provides a web-based tool, ShinyOne, to manage apps powered by Quickomics and reports generated by running the pipeline on multiple projects in one place. Researchers can experience the functionalities by exploring demo data sets hosted at http://shinyone.bxgenomics.com or following the tutorial, https://interactivereport.github.io/RNASequest/tutorial/docs/introduction.html to set up the framework locally to process private RNAseq datasets. The source code released under MIT open-source license is provided at https://github.com/interactivereport/RNASequest.


Sujet(s)
RNA-Seq , Analyse de séquence d'ARN , Logiciel
18.
Pestic Biochem Physiol ; 188: 105231, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36464350

RÉSUMÉ

Viruses arrest the host cell cycle and using multiple functions of host cells is an important approach for their replication. Baculovirus arrests infected insect cells at both the late S and G2/M phase, but the strategy employed by baculovirus is not clearly understood. Our research suggests that the Bombyx mori nucleopolyhedrovirus (BmNPV) could arrest the cell cycle in the G2/M phase to promote virus replication, and also that the viral protein LEF-11 could inhibit host cell proliferation and arrest the cell cycle by inhibiting the cell cycle checkpoint proteins BmCyclinB and BmCDK1. Furthermore, we found that LEF-11 interacts with BmIMPI to regulate cell proliferation, but not by direct interaction with BmCyclinB or BmCDK1. In addition, our findings showed that BmIMPI was important and necessary for LEF-11 induced cell cycle arrest in the G2/M phase. Moreover, BmIMPI was found to interact with BmCyclinB and BmCDK1, and down-regulate the expression of BmCyclinB and BmCDK1 to compromise the cell cycle and cell proliferation. Taken together, the data presented demonstrated that baculovirus LEF-11 regulates BmIMPI to inhibit host cell proliferation and provide a new insight into the molecular mechanisms employed by viruses to induce cell cycle arrest.


Sujet(s)
Baculoviridae , Réplication virale , Division cellulaire , Points de contrôle du cycle cellulaire , Cycle cellulaire
19.
J Neuroinflammation ; 19(1): 306, 2022 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-36536441

RÉSUMÉ

Multiple sclerosis (MS) is a chronic and often disabling autoimmune disease of the central nervous system (CNS). Cerebrospinal fluid (CSF) surrounds and protects the CNS. Analysis of CSF can aid the diagnosis of CNS diseases, help to identify the prognosis, and underlying mechanisms of diseases. Several recent studies have leveraged single-cell RNA-sequencing (scRNA-seq) to identify MS-associated changes in CSF cells that are considerably more altered than blood cells in MS. However, not all alterations were replicated across all studies. We therefore integrated multiple available scRNA-seq datasets of CSF cells from MS patients with early relapsing-remitting (RRMS) disease. We provide a searchable and interactive resource of this integrated analysis ( https://CSFinMS.bxgenomics.com ) facilitating diverse visualization and analysis methods without requiring computational skills. In the present joint analysis, we replicated the known expansion of B lineage and the recently described expansion of natural killer (NK) cells and some cytotoxic T cells and decrease of monocytes in the CSF in MS. The previous observation of the abundance of Th1-like Th17 effector memory cells in the CSF was not replicated. Expanded CSF B lineage cells resembled class-switched plasmablasts/-cells (e.g., SDC1/CD138, MZB1) as expected. Our integrative analysis thus validates increased cell type diversity and B cell maturation in the CSF in MS and improves accessibility of available data.


Sujet(s)
Sclérose en plaques récurrente-rémittente , Sclérose en plaques , Humains , Transcriptome , Système nerveux central , Analyse de profil d'expression de gènes , Cellules tueuses naturelles , Liquide cérébrospinal
20.
Sci Rep ; 12(1): 17394, 2022 10 17.
Article de Anglais | MEDLINE | ID: mdl-36253414

RÉSUMÉ

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


Sujet(s)
Cellules souches pluripotentes induites , Reproductibilité des résultats , Analyse de séquence d'ARN , Transcriptome
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE