Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 6.273
Filtrer
1.
J Food Sci ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955774

RÉSUMÉ

Soybean protein isolate (SPI) is a highly functional protein source used in various food applications, such as emulsion, gelatin, and food packaging. However, its commercial application may be limited due to its poor mechanical properties, barrier properties, and high water sensitivity. Studies have shown that modifying SPI through glycosylation can enhance its functional properties and biological activities, resulting in better application performance. This paper reviews the recent studies on glycosylation modification of SPI, including its quantification method, structural improvements, and enhancement of its functional properties, such as solubility, gelation, emulsifying, and foaming. The review also discusses how glycosylation affects the bioactivity of SPI, such as its antioxidant and antibacterial activity. This review aims to provide a reference for further research on glycosylation modification and lay a foundation for applying SPI in various fields.

3.
Clin Nutr ESPEN ; 63: 197-206, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38963766

RÉSUMÉ

BACKGROUND: Gut microbiota and obesity are deeply interconnected. However, the causality in the relationship between these factors remains unclear. Therefore, this study aimed to elucidate the genetic relationship between gut microbiota and childhood obesity. METHODS: Genetic summary statistics for the gut microbiota were obtained from the MiBioGen consortium. Genome-wide association studies (GWAS) summary data for childhood obesity were obtained from North American, Australian, and European collaborative genome-wide meta-analyses. Mendelian randomization (MR) analyses were performed using the inverse variance weighting method. 16 children with obesity and 16 without obesity were included for clinical observation, and their weight, body mass index, blood lipid levels, and gut microbiology were assessed. Paired t-test was the primary method of data analysis, and statistical significance was set at P < 0.05. RESULTS: MR identified 16 causal relationships between the gut microbiome and childhood obesity. In the case-control study, we found that five gut microorganisms differed between children with and without obesity, whereas three gut microorganisms changed after weight loss in children with obesity. CONCLUSION: Our study provides new insights into the genetic mechanisms underlying gut microbiota and childhood obesity. TRIAL REGISTRATION NUMBER: ChiCTR2300072179. NAME OF REGISTRY: Change of intestinal flora and plasma metabolome in obese children and their weight loss intervention: a randomized controlled tria URL OF REGISTRY: https://www.chictr.org.cn/showproj.html. DATE OF REGISTRATION: 2023-06-06. DATE OF ENROLMENT OF THE FIRST PARTICIPANT TO THE TRIAL: 2023-06-07.

4.
Chem Commun (Camb) ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38967357

RÉSUMÉ

A method for the synthesis of furans bearing indoline skeletons was developed via an intramolecular palladium-catalyzed 5-exo-dig cyclization/etherification cascade of N-propargyl arylamines containing a 1,3-dicarbonyl side chain. This method realized the first capture of vinyl carbopalladiums by ketones as O-nucleophiles and showed a wide range of substrate tolerability affording trisubstituted furans in various yields. The enantioselective version for this domino process and diverse derivatizations of the reaction products were also studied.

6.
Adv Mater ; : e2407433, 2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38973089

RÉSUMÉ

Interface-induced nonradiative recombination losses at the perovskite/electron transport layer (ETL) are an impediment to improving the efficiency and stability of inverted (p-i-n) perovskite solar cells (PSCs). Tridecafluorohexane-1-sulfonic acid potassium (TFHSP) is employed as a multifunctional dipole molecule to modify the perovskite surface. The solid coordination and hydrogen bonding efficiently passivate the surface defects, thereby reducing nonradiative recombination. The induced positive dipole layer between the perovskite and ETLs improves the energy band alignment, enhancing interface charge extraction. Additionally, the strong interaction between TFHSP and the perovskite stabilizes the perovskite surface, while the hydrophobic fluorinated moieties prevent the ingress of water and oxygen, enhancing the device stability. The resultant devices achieve a power conversion efficiency (PCE) of 24.6%. The unencapsulated devices retain 91% of their initial efficiency after 1000 h in air with 60% relative humidity, and 95% after 500 h under maximum power point (MPP) tracking at 35 °C. The utilization of multifunctional dipole molecules opens new avenues for high-performance and long-term stable perovskite devices.

7.
Electrophoresis ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38973474

RÉSUMÉ

An imaged capillary isoelectric focusing (icIEF)-based method was developed and validated as a multi-attribute method for a bispecific antibody (BsAb). First, as the traditional application of the icIEF method, it serves as an identity assay and purity assay for the BsAb. Second, the method can also be used as an impurity assay for the homodimer monoclonal antibodies generated during BsAb assembly. The homodimer impurity analysis for BsAb is usually done by hydrophobic interaction chromatography methods in the industry. The icIEF method has good sensitivity (down to 4 µg/mL in a limit of quantitation) when UV fluorescence detection is used, which detects the native fluorescence of proteins. This is the first report that an icIEF method has been applied as impurity assay.

8.
Neuroreport ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38973489

RÉSUMÉ

To investigate the role of JAK2/STAT3 signaling pathway in neural function recovery in rats with spinal cord injury (SCI) after treadmill training. Sprague-Dawley rats were randomly divided into four groups: (a) sham group; (b) SCI group; (c) SCI+treadmill training group (SCI/TT); and (d) SCI/TT+AG490 group (a JAK2 inhibitor) (n = 12). The 12 Sprague-Dawley rats in each group were randomly assigned into 1st, 3rd, 7th, and 14th day subgroups. The Basso-Beattie-Bresnahan (BBB) locomotor rating scale was used to assess the spinal cord function, and JAK2, STAT3, and IL-6 protein expressions in the rat spinal cord were evaluated by western blot. The level of cell apoptosis and expressions of apoptotic proteins were evaluated by TUNEL assay and immunohistochemistry, respectively. Rats in the SCI+TT group showed a significantly higher BBB score after SCI compared with the SCI group and the SCI/TT+AG490 group. Mechanistically, the JAK2/STAT3 signal pathway was immediately activated after SCI compared with sham group, and JAK2 and STAT3 were obviously upregulated when treadmill training was performed (P < 0.05). Results of TUNEL assay showed that the apoptotic rate in SCI/TT was significantly lower than that in the SCI group and SCI/TT+AG490 group (P < 0.05). Besides, the IL-6 expression in the SCI/TT group was significantly attenuated compared with the SCI group (P < 0.05). Our results showed that physical treadmill training can enhance activation of JAK2/STAT3 signal pathway and attenuate apoptosis in the injured spinal cord, resulting in better functional recovery. These results underline the importance of synergistic treatment strategies for SCI.

10.
Plant Cell Environ ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38963121

RÉSUMÉ

Perennial trees have a recurring annual cycle of wood formation in response to environmental fluctuations. However, the precise molecular mechanisms that regulate the seasonal formation of wood remain poorly understood. Our prior study indicates that VCM1 and VCM2 play a vital role in regulating the activity of the vascular cambium by controlling the auxin homoeostasis of the cambium zone in Populus. This study indicates that abscisic acid (ABA) affects the expression of VCM1 and VCM2, which display seasonal fluctuations in relation to photoperiod changes. ABA-responsive transcription factors AREB4 and AREB13, which are predominantly expressed in stem secondary vascular tissue, bind to VCM1 and VCM2 promoters to induce their expression. Seasonal changes in the photoperiod affect the ABA amount, which is linked to auxin-regulated cambium activity via the functions of VCM1 and VCM2. Thus, the study reveals that AREB4/AREB13-VCM1/VCM2-PIN5b acts as a molecular module connecting ABA and auxin signals to control vascular cambium activity in seasonal wood formation.

11.
Plant Physiol Biochem ; 214: 108918, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38986238

RÉSUMÉ

Lodging largely affects yield, quality and mechanical harvesting of maize. Stalk strength is one of the major factors that affect maize lodging. Although plant cell wall components including lignin and cellulose were known to be associated with stalk strength and lodging resistance, spatial accumulation of specific lignin monomers and cellulose in different tissues and their association with stalk strength in maize was not clearly understood. In this study, we found that both G and S lignin monomers accumulate highest in root, stem rind and leaf vein. Consistently, most lignin biosynthetic genes were expressed higher in root and stem than in other tissues. However, cellulose appears to be lowest in root. There are only mild changes of G lignin and cellulose in different internodes. Instead, we noticed a dramatic decrease of S-lignin accumulation and lignin biosynthetic gene expression in 2nd to 4th internodes wherein stem breakage usually occurs, thereby revealing a few candidate lignin biosynthetic genes associated with stalk strength. Moreover, stalk strength is positively correlated with G, S lignin, and cellulose, but negatively correlated with S/G ratio based on data of maize lines with high or low stalk strength. Loss-of-function of a caffeic acid o-methyltransferase (COMT), which is involved in S lignin biosynthesis, in the maize bm3 mutant, leads to lower stalk strength. Our data collectively suggest that stalk strength is determined by tissue-specific accumulation of lignin monomers and cellulose, and manipulation of the cell wall components by genetic engineering is vital to improve maize stalk strength and lodging resistance.

12.
Sci Total Environ ; : 174618, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38986687

RÉSUMÉ

Understanding the dynamics of the rumen microbiome is crucial for optimizing ruminal fermentation to improve feed efficiency and addressing concerns regarding antibiotic resistance in the livestock production industry. This study aimed to investigate the adaptive effects of microbiome and the properties of carbohydrate-active enzymes (CAZy) and antibiotic resistance genes (ARGs) in response to dietary protein shifts. Twelve Charolais bulls were randomly divided into two groups based on initial body weight: 1) Treatment (REC), where the animals received a 7 % CP diet in a 4-week restriction period, followed by a 13 % CP diet in a 2-week re-alimentation period; 2) Control (CON), where the animals were fed the 13 % CP diet both in the restriction period and the re-alimentation period. Protein restriction decreased the concentrations of acetate, propionate, isovalerate, glutamine, glutamate, and isoleucine (P < 0.05), while protein re-alimentation increased the concentrations of arginine, methionine sulfoxide, lysine, and glutamate (P < 0.05). Protein restriction decreased the relative abundances of Bacteroidota but increased Proteobacteria, with no difference observed after re-alimentation. Protein restriction decreased relative abundances of the genera Bacteroides, Prevotella, and Bifidobacterium. Following protein recovery, Escherichia was enriched in CON, while Pusillibacter was enriched in REC, indicating that distinct microbial adaptations to protein shifts. Protein restriction increased GH97 while reducing GH94 and GT35 compared to CON. Protein restriction decreased abundances of KO genes involved in VFA production pathways, while they were recovered in the re-alimentation period. Protein restriction reduced tet(W/32/O) abundances but increased those of tet(X), nimJ, and rpoB2. Following protein re-alimentation, there was a decrease in ErmQ and tet(W/N/W), and an increase in Mef(En2) compared to CON, highlighting the impact of dietary protein on the distribution of antibiotic-resistant bacteria. Overall, comprehensive metagenomic analysis reveals the dynamic adaptability of the microbiome in response to dietary shifts, indicating its capacity to modulate carbohydrate metabolism and ARGs in response to protein availability.

13.
Front Microbiol ; 15: 1428958, 2024.
Article de Anglais | MEDLINE | ID: mdl-38993495

RÉSUMÉ

Starting in 2015, the widespread prevalence of hydropericardium-hepatitis syndrome (HHS) has led to considerable financial losses within China's poultry farming industry. In this study, pathogenicity assessments, whole-genome sequencing, and analyses were conducted on 10 new isolates of the novel genotype FAdV-4 during a HHS outbreak in Guangxi Province, China, from 2019 to 2020. The results indicated that strains GX2019-010 to GX2019-013 and GX2019-015 to GX2019-018 were highly virulent, while strain GX2020-019 exhibited moderate virulence. Strain GX2019-014 was characterized as a wild-type strain with low virulence, displaying no pathogenic effects when 0.5 mL containing 106 TCID50 virus was inoculated into the muscle of specific pathogen-free (SPF) chickens at 4 weeks of age, while 107 TCID50 and 108 TCID50 resulted in mortality rates of 80 and 100%, respectively. The whole genomes of strains GX2019-010 to GX2019-013, GX2019-015 to GX2019-018, and GX2020-019 showed high homology with other Chinese newly emerging highly pathogenic FAdV-4 strains, whereas GX2019-014 was closer to nonmutant strains and shared the same residues with known nonpathogenic strains (B1-7, KR5, and ON1) at positions 219AA and 380AA of the Fiber-2 protein. Our work enriches the research on prevalent strains of FAdV-4 in China, expands the knowledge on the virulence diversity of the novel genotype FAdV-4, and provides valuable reference material for further investigations into the key virulence-associated genetic loci of FAdV-4.

14.
Int J Biol Sci ; 20(9): 3480-3496, 2024.
Article de Anglais | MEDLINE | ID: mdl-38993560

RÉSUMÉ

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver-related morbidity and mortality. Though high fructose intake is acknowledged as a metabolic hazard, its role in the etiology of MASLD requires further clarification. Here, we demonstrated that high dietary fructose drives MASLD development and promotes MASLD progression in mice, and identified Usp2 as a fructose-responsive gene in the liver. Elevated USP2 levels were detected in the hepatocytes of MASLD mice; a similar increase was observed following fructose exposure in primary hepatocytes and mouse AML12 cells. Notably, hepatocytes overexpressing USP2 presented with exaggerated lipid accumulation and metabolic inflammation when exposed to fructose. Conversely, USP2 knockdown mitigated these fructose-induced changes. Furthermore, USP2 was found to activate the C/EBPα/11ß-HSD1 signaling, which further impacted the equilibrium of cortisol and cortisone in the circulation of mice. Collectively, our findings revealed the role of dietary fructose in MASLD pathogenesis and identified the USP2-mediated C/EBPα/ 11ß-HSD1 signaling as a potential target for the management of MASLD.


Sujet(s)
11-beta-Hydroxysteroid dehydrogenase type 1 , Fructose , Ubiquitin thiolesterase , Animaux , Souris , Fructose/effets indésirables , Ubiquitin thiolesterase/métabolisme , Ubiquitin thiolesterase/génétique , Mâle , 11-beta-Hydroxysteroid dehydrogenase type 1/métabolisme , 11-beta-Hydroxysteroid dehydrogenase type 1/génétique , Souris de lignée C57BL , Transduction du signal , Stéatose hépatique/métabolisme , Hépatocytes/métabolisme , Foie/métabolisme , Endopeptidases/métabolisme
15.
BMC Pulm Med ; 24(1): 323, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965505

RÉSUMÉ

BACKGROUND: In the tumor microenvironment (TME), a bidirectional relationship exists between hypoxia and lactate metabolism, with each component exerting a reciprocal influence on the other, forming an inextricable link. The aim of the present investigation was to develop a prognostic model by amalgamating genes associated with hypoxia and lactate metabolism. This model is intended to serve as a tool for predicting patient outcomes, including survival rates, the status of the immune microenvironment, and responsiveness to therapy in patients with lung adenocarcinoma (LUAD). METHODS: Transcriptomic sequencing data and patient clinical information specific to LUAD were obtained from comprehensive repositories of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). A compendium of genes implicated in hypoxia and lactate metabolism was assembled from an array of accessible datasets. Univariate and multivariate Cox regression analyses were employed. Additional investigative procedures, including tumor mutational load (TMB), microsatellite instability (MSI), functional enrichment assessments and the ESTIMATE, CIBERSORT, and TIDE algorithms, were used to evaluate drug sensitivity and predict the efficacy of immune-based therapies. RESULTS: A novel prognostic signature comprising five lactate and hypoxia-related genes (LHRGs), PKFP, SLC2A1, BCAN, CDKN3, and ANLN, was established. This model demonstrated that LUAD patients with elevated LHRG-related risk scores exhibited significantly reduced survival rates. Both univariate and multivariate Cox analyses confirmed that the risk score was a robust prognostic indicator of overall survival. Immunophenotyping revealed increased infiltration of memory CD4 + T cells, dendritic cells and NK cells in patients classified within the high-risk category compared to their low-risk counterparts. Higher probability of mutations in lung adenocarcinoma driver genes in high-risk groups, and the MSI was associated with the risk-score. Functional enrichment analyses indicated a predominance of cell cycle-related pathways in the high-risk group, whereas metabolic pathways were more prevalent in the low-risk group. Moreover, drug sensitivity analyses revealed increased sensitivity to a variety of drugs in the high-risk group, especially inhibitors of the PI3K-AKT, EGFR, and ELK pathways. CONCLUSIONS: This prognostic model integrates lactate metabolism and hypoxia parameters, offering predictive insights regarding survival, immune cell infiltration and functionality, as well as therapeutic responsiveness in LUAD patients. This model may facilitate personalized treatment strategies, tailoring interventions to the unique molecular profile of each patient's disease.


Sujet(s)
Adénocarcinome pulmonaire , Acide lactique , Tumeurs du poumon , Microenvironnement tumoral , Humains , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/mortalité , Pronostic , Microenvironnement tumoral/génétique , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/métabolisme , Adénocarcinome pulmonaire/anatomopathologie , Acide lactique/métabolisme , Mâle , Femelle , Adulte d'âge moyen , Marqueurs biologiques tumoraux/métabolisme , Marqueurs biologiques tumoraux/génétique , Sujet âgé , Hypoxie/métabolisme
16.
Dev Biol ; 515: 30-45, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38971398

RÉSUMÉ

The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.

18.
Org Lett ; 26(27): 5758-5763, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38949506

RÉSUMÉ

Anthrones are key structural motifs in many natural products and pharmaceutical chemicals. However, due to its unique tricyclic aromatic structure, the synthetic space for the development of chiral anthrone derivatives is largely limited. By utilizing the potential of the copper-catalyzed remote asymmetric yne-allylic substitution reaction, we describe the first example of copper-catalyzed highly regio- and enantioselective remote yne-allylic substitution on various yne-allylic esters with anthrones under a mild reaction condition, which afforded a range of enantioenriched 1,3-enynes with exhibiting broad functional group tolerance across 51 examples.

19.
Cancer Invest ; 42(6): 527-537, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38965994

RÉSUMÉ

Despite the emergence of various treatment strategies for rectal cancer based on neoadjuvant chemoradiotherapy, there is currently a lack of reliable biomarkers to determine which patients will respond well to neoadjuvant chemoradiotherapy. Through collecting hematological and biochemical parameters data of patients prior to receiving neoadjuvant chemoradiotherapy, we evaluated the predictive value of systemic inflammatory indices for pathological response and prognosis in rectal cancer patients. We found that baseline GRIm-Score was an independent predictor for MPR in rectal cancer patients. However, no association was observed between several commonly systemic inflammation indices and long-term outcome.


Sujet(s)
Traitement néoadjuvant , Tumeurs du rectum , Humains , Tumeurs du rectum/anatomopathologie , Tumeurs du rectum/thérapie , Tumeurs du rectum/immunologie , Mâle , Femelle , Adulte d'âge moyen , Traitement néoadjuvant/méthodes , Sujet âgé , Chimioembolisation thérapeutique/méthodes , Pronostic , Résultat thérapeutique , Adulte , Chimioradiothérapie/méthodes
20.
Sci Rep ; 14(1): 15956, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987349

RÉSUMÉ

With global warming, heat stress has become an important factor that seriously affects crop yield and quality. Therefore, understanding plant responses to heat stress is important for agricultural practice, but the molecular mechanism of high-temperature tolerance in garlic remains unclear. In this study, 'Xusuan No. 6' was used as the experimental material. After heat stress for 0 (CK), 2 and 24 h, transcriptome sequencing was used to screen metabolic pathways and differentially expressed genes (DEGs) closely related to heat stress and was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 86,110 unigenes obtained from the raw transcriptome sequencing data were spliced. After 2 h of heat treatment, the expression levels of 8898 genes increased, and 3829 genes were decreased in leaves. After 24 h, the expression levels of 7167 genes were upregulated, and 3176 genes were downregulated. Gene Ontology enrichment analysis showed that DEGs were mainly enriched in seven categories: cellular processes, metabolic processes, binging, catalytic activity, cellular anatomical entity and protein-containing complex response to stimulus. Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that DEGs are involved in protein processing in the endoplasmic reticulum, plant hormone signal transduction, phenylpropanoid biosynthesis, and photosynthetic antenna proteins. Six genes were selected and further verified by qRT-PCR. In this study, the full-length transcriptome of garlic was constructed, and the regulatory genes related to the heat resistance of garlic were studied. Taken together, these findings can provide a theoretical basis for the cloning of heat resistance genes in garlic and for the analysis of heat resistance mechanisms.


Sujet(s)
Ail , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Réaction de choc thermique , Transcriptome , Ail/génétique , Ail/métabolisme , Réaction de choc thermique/génétique , Gene Ontology , Protéines végétales/génétique , Protéines végétales/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE